2024届上海市上海外国语大学附属中学数学高一下期末监测模拟试题含解析_第1页
2024届上海市上海外国语大学附属中学数学高一下期末监测模拟试题含解析_第2页
2024届上海市上海外国语大学附属中学数学高一下期末监测模拟试题含解析_第3页
2024届上海市上海外国语大学附属中学数学高一下期末监测模拟试题含解析_第4页
2024届上海市上海外国语大学附属中学数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市上海外国语大学附属中学数学高一下期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列中,已知,,则一定()A.是等差数列 B.是等比数列 C.不是等差数列 D.不是等比数列2.已知实数,,,则()A. B. C. D.3.已知向量,则向量的夹角为()A. B. C. D.4.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则5.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.6.用数学归纳法证明这一不等式时,应注意必须为()A. B., C., D.,7.设非零向量,满足,则()A. B. C.// D.8.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3609.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+110.数列的一个通项公式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.12.向量满足:,与的夹角为,则=_____________;13.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________14.若数列是等差数列,则数列也为等差数列,类比上述性质,相应地,若正项数列是等比数列,则数列_________也是等比数列.15.已知,若对任意,均有,则的最小值为______;16.圆和圆交于A,B两点,则弦AB的垂直平分线的方程是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在公比不为1的等比数列中,,且依次成等差数列(1)求数列的通项公式;(2)令,设数列的前项和,求证:18.已知.(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)求函数在时的值域.19.经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:.(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?20.已知函数,(1)求的单调递增区间.(2)求在区间的最大值和最小值.21.(1)任意向轴上这一区间内投掷一个点,则该点落在区间内的概率是多少?(2)已知向量,,若,分别表示一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

依据等差、等比数列的定义或性质进行判断。【详解】因为,,,所以一定不是等差数列,故选C。【点睛】本题主要考查等差、等比数列定义以及性质的应用。2、C【解析】

先得出,,,然后利用在上的单调性即可比较出的大小.【详解】因为所以,,因为且在上单调递增所以故选:C【点睛】利用函数单调性比较函数值大小的时候,应将自变量转化到同一个单调区间内.3、C【解析】试题分析:,设向量的夹角为,考点:向量夹角及向量的坐标运算点评:设夹角为,4、D【解析】

利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.5、D【解析】

首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【点睛】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.6、D【解析】

根据题意验证,,时,不等式不成立,当时,不等式成立,即可得出答案.【详解】解:当,,时,显然不等式不成立,当时,不等式成立,故用数学归纳法证明这一不等式时,应注意必须为,故选:.【点睛】本题考查数学归纳法的应用,属于基础题.7、A【解析】

根据与的几何意义可以判断.【详解】由的几何意义知,以向量,为邻边的平行四边形为矩形,所以.故选:A.【点睛】本题考查向量的加减法的几何意义,同时,本题也可以两边平方,根据数量积的运算推出结论.8、A【解析】

根据数得250粒内夹谷30粒,根据比例,即可求得结论。【详解】设批米内夹谷约为x石,则,解得:选A。【点睛】此题考查简单随机抽样,根据部分的比重计算整体值。9、D【解析】

利用算法的定义来分析判断各选项的正确与否,即可求解,得到答案.【详解】由算法的定义可知,算法、程序是完成一件事情的可操作的步骤:可得A、B、C为算法,D没有明确的规则和步骤,所以不是算法,故选D.【点睛】本题主要考查了算法的概念,其中解答的关键是理解算法的概念,由概念作出正确的判断,着重考查了分析问题和解答问题的能力,属于基础题.10、C【解析】

利用特殊值,将代入四个选项即可排除错误选项.【详解】将代入四个选项,可得A中B中D中只有C中所以排除ABD选项故选:C【点睛】本题考查了根据几个项选择数列的通项公式,特殊值法是解决此类问题的简单方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【点睛】本题考查了方差的计算,意在考查学生的计算能力.12、【解析】

根据模的计算公式可直接求解.【详解】故填:.【点睛】本题考查了平面向量模的求法,属于基础题型.13、,【解析】

根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】

利用类比推理分析,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.【详解】由数列是等差数列,则当时,数列也是等差数列.类比上述性质,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.故答案为:【点睛】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).15、【解析】

根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.16、【解析】

弦AB的垂直平分线即两圆心连线.【详解】弦AB的垂直平分线即两圆心连线方程为故答案为【点睛】本题考查了弦的垂直平分线,转化为过圆心的直线可以简化运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见证明【解析】

(1)根据已知条件得到关于的方程组,解方程组得的值,即得数列的通项公式;(2)先求出,,再利用裂项相消法求,不等式即得证.【详解】(1)设公比为,,,成等差数列,可得,即,解得(舍去),或,又,解得所以.(2)故,得【点睛】本题主要考查等比数列通项的求法,考查等差数列前n项和的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)化简得=,利用周期的公式和正弦型函数的性质,即可求解;(Ⅱ)由,可得,得到∈,即可求得函数的值域.【详解】(Ⅰ)由题意,化简得=,所以函数的最小正周期为,又由,解得所以的单调递增区间为.(Ⅱ)由,可得,所以∈,所以的值域为.【点睛】本题主要考查了三角函数的的图象与性质的应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)v=40千米/小时,车流量最大,最大值为11.08千辆/小时(2)汽车的平均速度应控制在25≤v≤64这个范围内【解析】

(1)将已知函数化简,利用基本不等式求车流量y最大值;

(2)要使该时段内车流量至少为10千辆/小时,即使,解之即可得汽车的平均速度的控制范围.【详解】解:(1)=≤=≈11.08,当v=,即v=40千米/小时,车流量最大,最大值为11.08千辆/小时.(2)据题意有:,化简得,即,所以,所以汽车的平均速度应控制在这个范围内.【点睛】本题以已知函数关系式为载体,考查基本不等式的使用,考查解不等式,属于基础题.20、(1),;(2)最大值为,最小值为【解析】

利用二倍角公式、两角和差正弦公式和辅助角公式可化简出;(1)令,解出的范围即为所求单调递增区间;(2)利用的范围可求得所处的范围,整体对应正弦函数图象可确定最大值和最小值取得时的值,进而求得最值.【详解】(1)令,,解得:,的单调递增区间为,(2)当时,当时,取得最大值,最大值为当时,取得最小值,最小值为【点睛】本题考查正弦型函数单调区间和最值的求解问题,涉及到利用两角和差公式、二倍角公式和辅助角公式化简三角函数;关键是能够灵活应用整体对应的方式,结合正弦函数的图象与性质来进行求解.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论