版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省重点中学数学高一下期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线2.阅读如图所示的程序框图,运行相应的程序,输出的值等于()A.-3 B.-10 C.0 D.-23.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.4.已知圆和两点,,.若圆上存在点,使得,则的最小值为()A. B. C. D.5.已知在中,为线段上一点,且,若,则()A. B. C. D.6.若三棱锥的四个面都为直角三角形,平面,,,则三棱锥中最长的棱长为()A. B. C. D.7.已知函数与的图象上存在关于轴对称的点,则实数的取值范围是().A. B. C. D.8.设正项等比数列的前项和为,若,,则公比()A. B. C. D.9.设向量,且,则实数的值为()A. B. C. D.10.如图,在四棱锥中,底面,底面为直角梯形,,,则直线与平面所成角的大小为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.观察下列式子:你可归纳出的不等式是___________12.两圆交于点和,两圆的圆心都在直线上,则____________;13.在锐角中,内角A,B,C所对的边分别为a,b,c,若的面积为,且,则的周长的取值范围是________.14.设ω为正实数.若存在a、b(π≤a<b≤2π),使得15.已知关于实数x,y的不等式组构成的平面区域为,若,使得恒成立,则实数m的最小值是______.16.如图,,分别为的中线和角平分线,点P是与的交点,若,,则的面积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,中线长AM=2.(1)若=-2,求证:++=0;(2)若P为中线AM上的一个动点,求·(+)的最小值.18.已知为数列的前项和,且.(1)求数列的通项公式;(2)若,求数列的前项和.19.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照,,分成9组,制成了如图所示的频率分布直方图.(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;(2)估计居民月均用水量的中位数.20.同时抛掷两枚骰子,并记下二者向上的点数,求:二者点数相同的概率;两数之积为奇数的概率;二者的数字之和不超过5的概率.21.已知向量,向量为单位向量,向量与的夹角为.(1)若向量与向量共线,求;(2)若与垂直,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角性.2、A【解析】
第一次循环,;第二次循环,;第三次循环,,当时,不成立,循环结束,此时,故选A.3、D【解析】
求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.4、D【解析】
因为,所以点的轨迹为以为直径的圆,故点是两圆的交点,根据圆与圆的位置关系,即可求出.【详解】根据可知,点的轨迹为以为直径的圆,故点是圆和圆的交点,因此两圆相切或相交,即,亦即.故的最小值为.故选:D.【点睛】本题主要考查圆与圆的位置关系的应用,意在考查学生的转化能力,属于基础题.5、C【解析】
首先,由已知条件可知,再有,这样可用表示出.【详解】∵,∴,,∴,∴.故选C.【点睛】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.6、B【解析】
根据题意,画出满足题意的三棱锥,求解棱长即可.【详解】因为平面,故,且,则为直角三角形,由以及勾股定理得:;同理,因为则为直角三角形,由,以及勾股定理得:;在保证和均为直角三角形的情况下,①若,则在中,由勾股定理得:,此时在中,由,及,不满足勾股定理故当时,无法保证为直角三角形.不满足题意.②若,则,又因为面ABC,面ABC,则,故面PAB,又面PAB,故,则此时可以保证也为直角三角形.满足题意.③若,在直角三角形BCA中,斜边AB=2,小于直角边AC=,显然不成立.综上所述:当且仅当时,可以保证四棱锥的四个面均为直角三角形,故作图如下:由已知和勾股定理可得:,显然,最长的棱为.故选:B.【点睛】本题表面考查几何体的性质,以及棱长的计算,涉及线面垂直问题,需灵活应用.7、A【解析】若函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的图象是开口朝上,且以直线x=1为对称轴的抛物线,故当x=1时,g(x)取最小值﹣2,当x=2时,函数取最大值﹣1,故a∈[﹣2,﹣1],故选:A.点睛:图像上存在关于轴对称的点,即方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,转化为方程有解求参的问题,变量分离,画出函数图像,使得函数图像和常函数图像有交点即可;这是解决方程有解,图像有交点,函数有零点的常见方法。8、D【解析】
根据题意,求得,结合,即可求解,得到答案.【详解】由题意,正项等比数列满足,,即,,所以,又由,因为,所以.故选:D.【点睛】本题主要考查了的等比数列的通项公式,以及等比数列的前n项和公式的应用,其中解答中熟记等比数列的通项公式,以及等比数列的前n项和公式,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解析】
根据向量垂直时数量积为0,列方程求出m的值.【详解】向量,(m+1,﹣m),当⊥时,•0,即﹣(m+1)﹣2m=0,解得m.故选D.【点睛】本题考查了平面向量的数量积的坐标运算,考查了向量垂直的条件转化,是基础题.10、A【解析】
取中点,中点,连接,先证明为所求角,再计算其大小.【详解】取中点,中点,连接.设易知:平面平面易知:四边形为平行四边形平面,即为直线与平面所成角故答案选A【点睛】本题考查了线面夹角,先找出线面夹角是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
观察三个已知式子的左边和右边,第1个不等式左边可改写成;第2个不等式左边的可改写成,右边的可改写成;第3个不等式的左边可改写成;据此可发现第个不等式的规律.【详解】观察三个已知式子的左边和右边,第1个式子可改写为:,第2个式子可改写为:,第3个式子可改写为:,所以可归纳出第个不等式是:.故答案为:.【点睛】本题考查归纳推理,考查学生分析、解决问题的能力,属于基础题.12、【解析】
由圆的性质可知,直线与直线垂直,,直线的斜率,,解得.故填:3.【点睛】本题考查了相交圆的几何性质,和直线垂直的关系,考查数形结合的思想与计算能力,属于基础题.13、【解析】
通过观察的面积的式子很容易和余弦定理联系起来,所以,求出,所以.再由正弦定理即可将的范围通过辅助角公式化简利用三角函数求出范围即可.【详解】因为的面积为,所以,所以.由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】此题考察解三角形,熟悉正余弦定理,然后一般求范围的题目转化为求解三角函数值域即可,易错点注意转化后角的范围区间,属于中档题目.14、ω∈[【解析】
由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.15、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面区域内的点与定点距离的平方,因此结合平面区域即可求出结果.【详解】作出约束条件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目标函数,则目标函数表示平面区域内的点与定点距离的平方,由图像易知,点到的距离最大.由得,所以.因此,即的最小值为37.故答案为37【点睛】本题主要考查简单的线性规划问题,只需分析清楚目标函数的几何意义,即可结合可行域来求解,属于常考题型.16、【解析】
设,,求点的坐标,运用换元法,求直线方程,再解出交点的坐标,再利用向量数量积运算求出,最后结合三角形面积公式求解即可.【详解】解:由,可设,,则,设,则,直线的方程为,直线的方程为,联立直线、方程解得,则,,可得,解得:,即,即,所以,故答案为:.【点睛】本题考查了向量的数量积运算,重点考查了两直线的交点坐标及三角形面积公式,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)最小值-2.【解析】
试题分析:(1)∵M是BC的中点,∴=(+).代入=-2,得=--,即++=0(2)若P为中线AM上的一个动点,若AM=2,我们易将·(+),转化为-2||||=2(x-1)2-2的形式,然后根据二次函数在定区间上的最值的求法,得到答案.试题解析:(1)证明:∵M是BC的中点,∴=(+)代入=-2,得=--,即++=0(2)设||=x,则||=2-x(0≤x≤2)∵M是BC的中点,∴+=2∴·(+)=2·=-2||||=-2x(2-x)=2(x2-2x)=2(x-1)2-2,当x=1时,取最小值-2考点:平面向量数量积的运算.【详解】请在此输入详解!18、(1)(2)当时,;当时,;当时,【解析】
(1)利用,时单独讨论.求解.
(2)对时单独讨论,当时,对从到的和应用错位相减法求和.【详解】当时,,得.当时,即.所以数列是以3为首项,3为公比的等比数列.所以(2)设,则..当时,当时,当时,设………………由﹣得所以所以综上所述:当时,当时,当时,【点睛】本题考查应用求通项公式和应用错位相减法求前项和,考查计算能力,属于难题.19、(1)3.6万;(2)2.06.【解析】
(1)由频率分布直方图的性质,求得,利用频率分布直方图求得月均用水量不低于3吨的频率为,进而得到样本中月均用水量不低于3吨的户数;(2)根据频率分布直方图,利用中位数的定义,即可求解.【详解】(1)由频率分布直方图的性质,可得,即,解得,又由频率分布直方图可得月均用水量不低于3吨的频率为,即样本中月均用水量不低于3吨的户数为万.(2)根据频率分布直方图,得:,则,所以中位数应在组内,即,所以中位数是.【点睛】本题主要考查了频率分布直方图的性质,以及频率分布直方图中位数的求解及应用,其中解答中熟记频率分布直方图的性质和中位数的计算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)(2)(3)【解析】
把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,利用列举法求出事件A中包含6个基本事件,由此能求出二者点数相同的概率.记事件B表示“两数之积为奇数”,利用列举法求出事件B中含有9个基本事件,由此能求出两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,利用列举法求出事件C中包含的基本事件有10个,由此能求出二者的数字之和不超过5的概率.【详解】解:把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,则事件A中包含6个基本事件,分别为:,,,,,,二者点数相同的概率.记事件B表示“两数之积为奇数”,则事件B中含有9个基本事件,分别为:,,,,,,,,,两数之积为奇数的概率.记事件C表示“二者的数字之和不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋修缮合同范本
- 泥水工程施工分包协议
- 工业齿轮油供应合同
- 2024个人担保借款合同(附借据)
- 城市轨道交通与城市老年人福利的整合考核试卷
- 公共航站楼设施消防巡查管理考核试卷
- 广告投放策略与实施规范考核试卷
- 商业用房转让合同范例
- 新版豇豆种植合同模板
- 灯具销售长期合同模板
- 七星电子流量计CS200产品使用手册(A,C,D)(+profibus+0-20ma)(su)
- 人民医院肿瘤科临床技术操作规范2023版
- PCOS多囊卵巢综合征青春期月经紊乱
- 【超星尔雅学习通】中国现代文学名著选讲网课章节答案
- 保险企业营销人员绩效考核问题研究
- 4.22.7.2运用PDCA循环降低透析患者透析中低血压发生率的项目
- 路灯杆强度计算简述
- 香烟出售情况记录表(竖版10天)
- EPC项目承包人建议书
- 旅行社运营实务电子课件 2.1 走进旅行社门市
- 《大数据财务分析-基于Python》课后习题答案
评论
0/150
提交评论