版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省武威市凉州区武威第一中学数学高一下期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为不同的平面,为不同的直线则下列选项正确的是()A.若,则 B.若,则C.若,则 D.若,则2.等差数列的前项和为,,,则()A.21 B.15 C.12 D.93.等比数列{an}中,Tn表示前n项的积,若T5=1,则()A.a1=1 B.a3=1 C.a4=1 D.a5=14.如图是一个射击靶的示意图,其中每个圆环的宽度与中心圆的半径相等.某人朝靶上任意射击一次没有脱靶,则其命中深色部分的概率为()A. B. C. D.5.已知函数,若,,则()A. B.2 C. D.6.已知等比数列中,,且有,则()A. B. C. D.7.向正方形ABCD内任投一点P,则“的面积大于正方形ABCD面积的”的概率是()A. B. C. D.8.已知函数与的图象上存在关于轴对称的点,则实数的取值范围是().A. B. C. D.9.已知,所在平面内一点P满足,则()A. B. C. D.10.已知,,,则()A. B. C.-7 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与直线互相平行,那么a的值等于_____.12.函数的最小正周期为_______.13.已知数列是首项为,公差为的等差数列,若数列是等比数列,则___________.14.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.15.已知函数fx=Asin16.函数在内的单调递增区间为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在三棱柱中,侧棱底面,,D为的中点,.(1)求证:平面;(2)求与所成角的余弦值.18.在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.19.已知等差数列的前n项和为,且,.(1)求;(2)设数列的前n项和为,求证:.20.已知某校甲、乙、丙三个年级的学生志愿者人数分别是240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动。(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作,求事件M“抽取的2名同学来自同一年级”发生的概率。21.已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
通过对ABCD逐一判断,利用点线面的位置关系即可得到答案.【详解】对于A选项,有可能异面,故错误;对于B选项,可能相交或异面,故错误;对于C选项,,显然故正确;对于D选项,也有可能,故错误.所以答案选C.【点睛】本题主要考查直线与平面的位置关系,意在考查学生的空间想象能力,难度不大.2、B【解析】依题意有,解得,所以.3、B【解析】分析:由题意知,由此可知,所以一定有.详解
,.
故选B.点睛:本题考查数列的性质和应用,解题时要认真审题,仔细解答.4、D【解析】
分别求出大圆面积和深色部分面积即可得解.【详解】设中心圆的半径为,所以中心圆的面积为,8环面积为,射击靶的面积为,所以命中深色部分的概率为.故选:D【点睛】此题考查几何概型,属于面积型,关键在于准确求解面积,根据圆环特征分别求出面积即可得解.5、C【解析】
由函数的解析式,求得,,进而得到,,结合两角差的余弦公式和三角函数的基本关系式,即可求解.【详解】由题意,函数,令,即,即,所以,令,即,即,所以,又因为,,即,,所以,,即,,平方可得,,两式相加可得,所以.故选:C.【点睛】本题主要考查了两角和与差的余弦公式,三角函数的基本关系式的应用,以及函数的解析式的应用,其中解答中合理应用三角函数的恒等变换的公式进行运算是解答的关键,着重考查了推理与运算能力,属于中档试题.6、A【解析】,,所以选A7、C【解析】
由题意,求出满足题意的点所在区域的面积,利用面积比求概率.【详解】由题意,设正方形的边长为1,则正方形的面积为1,要使的面积大于正方形面积的,需要到的距离大于,即点所在区域面积为,由几何概型得,的面积大于正方形面积的的概率为.故选:C.【点睛】本题考查几何概型的概率求法,解题的关键是明确概率模型,属于基础题.8、A【解析】若函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的图象是开口朝上,且以直线x=1为对称轴的抛物线,故当x=1时,g(x)取最小值﹣2,当x=2时,函数取最大值﹣1,故a∈[﹣2,﹣1],故选:A.点睛:图像上存在关于轴对称的点,即方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,转化为方程有解求参的问题,变量分离,画出函数图像,使得函数图像和常函数图像有交点即可;这是解决方程有解,图像有交点,函数有零点的常见方法。9、D【解析】
由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.10、C【解析】
把已知等式平方后可求得.【详解】∵,∴,即,,∵,∴,∴,,∴.故选C.【点睛】本题考查同角间的三角函数关系,考查两角和的正切公式,解题关键是把已知等式平方,并把1用代替,以求得.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】由题意得,验证满足条件,所以12、【解析】
将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.13、或【解析】
由等比数列的定义得出,可得出,利用两角和与差的余弦公式化简可求得的值.【详解】由于数列是首项为,公差为的等差数列,则,,又数列是等比数列,则,即,即,即,整理得,即,可得,,因此,或.故答案为:或.【点睛】本题考查利用等差数列和等比数列的定义求参数,同时也涉及了两角和与差的余弦公式的化简计算,考查计算能力,属于中等题.14、.【解析】
先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.15、f【解析】分析:首先根据函数图象得函数的最大值为2,得到A=2,然后算出函数的周期T=π,利用周期的公式,得到ω=2,最后将点(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f详解:根据函数图象得函数的最大值为2,得A=2,又∵函数的周期34T=5π将点(5π12,2)代入,得:2=2sin所以fx的解析式是f点睛:本题给出了函数y=Asin(ωx+φ)的部分图象,要确定其解析式,着重考查了三角函数基本概念和函数y=Asin(ωx+φ)的图象与性质的知识点,属于中档题.16、【解析】
将函数进行化简为,求出其单调增区间再结合,可得结论.【详解】解:,递增区间为:,可得,在范围内单调递增区间为。故答案为:.【点睛】本题考查了正弦函数的单调区间,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)连接,设与相交于点O,连接OD.证明OD为的中位线,得,即可证明;(2)由(1)可知,为与所成的角或其补角,在中,利用余弦定理求解即可【详解】(1)证明:如图,连接,设与相交于点O,连接OD.∵四边形是平行四边形.∴点O为的中点.∵D为AC的中点,∴OD为的中位线,平面,平面,平面.(2)由(1)可知,为与所成的角或其补角在中,D为AC的中点,则同理可得,在中,与BD所成角的余弦值为.【点睛】本题考查线面平行的判定,异面直线所成的角,考查空间想象能力与计算能力是基础题18、(1),;(2).【解析】
(1)根据等差数列{}中,=1,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,,设出基本元素,得到其通项公式;(2)由于,所以,那么利用裂项求和可以得到结论.【详解】(1)设:{}的公差为,因为,所以,解得=1或=-4(舍),=1.故,;(2)因为故.本题主要是考查了等差数列和等比数列的通项公式和前n项和,以及数列求和的综合运用.19、(1);(2)见解析【解析】
(1)设公差为,由,可得解得,,从而可得结果;(2)由(1),,则有,则,利用裂项相消法求解即可.【详解】(1)设公差为d,由题解得,.所以.(2)由(1),,则有.则.所以.【点睛】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.20、(1)应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)P【解析】
(1)由分层抽样的性质可得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,可得抽取7名同学,应分别从甲、乙、丙三个年级分别抽取3人,2人,2人;(2)从抽出的7名同学中随机抽取2名的所有可能结果为21种,其中2名同学来自同一年级的所有可能结果为5种,可得答案.【详解】解:(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2因为采取分层抽样的方法抽取7名同学,所以应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)从抽出的7名同学中随机抽取2名的所有可能结果为:ABACADAEAFAGBCBDBEBFBGCDCECF共21种CGDEDFDGEFEGFG不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则2名同学来自同一年级的所有可能结果为:AB,AC,BC,DE,FG共5种P【点睛】本题主要考查分层抽样及利用列举法求时间发生的概率,相对简单.21、(1),;(2).【解析】分析:(1)利用的关系,求解;倒序相加求。(2)先用错位相减求,分离参数,使得对于一切的恒成立,转化为求的最值。详解:(1)时满足上式,故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产线培训新员工
- 2024儿童用药安全
- 陕西省西安市新城区多校2023-2024学年三年级上学期月考英语试卷
- 电动车消防安全预防电动车火灾培训课件
- 天津市河东区2024-2025学年七年级上学期期中数学试卷(含答案)
- 山东省滨州市博兴县 2024-2025学年八年级上学期11月期中道德与法治试题(含答案)
- 2024-2025学年山东省日照市日照一中高二(上)第一次质检数学试卷(含答案)
- 江苏省苏州市2024-2025学年第一学期初三化学期中模拟测试卷(七)(含解析)
- 福建省南平市延平区多校2024-2025学年四年级上学期期中语文试题
- 信息技术(第2版)(拓展模块) 教案 项目五 Web和FTP服务器的配置与管理
- 2025届新高考政治复习备考策略及教学建议 课件
- 大棚膜购销合同协议书
- 2024电梯土建施工合同范本
- 世界的地形(课件) 2024-2025学年七年级地理上册同步课堂(人教版2024)
- 甘肃省道德与法治初二上学期试题及答案解析
- 2024-2030年中国分布式温度传感系统行业市场发展趋势与前景展望战略分析报告
- 2023年中考英语备考让步状语从句练习题(附答案)
- JGJ/T235-2011建筑外墙防水工程技术规程
- 《信息安全技术 网络安全产品互联互通框架》
- 汽车维修工时定额核定方法编制说明
- 辛弃疾词《青玉案·元夕》
评论
0/150
提交评论