薄晶圆市场:按技术、晶圆尺寸、製程、应用划分 - 2024-2030 年全球预测_第1页
薄晶圆市场:按技术、晶圆尺寸、製程、应用划分 - 2024-2030 年全球预测_第2页
薄晶圆市场:按技术、晶圆尺寸、製程、应用划分 - 2024-2030 年全球预测_第3页
薄晶圆市场:按技术、晶圆尺寸、製程、应用划分 - 2024-2030 年全球预测_第4页
薄晶圆市场:按技术、晶圆尺寸、製程、应用划分 - 2024-2030 年全球预测_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

预计2023年薄晶圆市场规模为104.7亿美元,预计2024年将达113亿美元,2030年将达到178.9亿美元,复合年增长率为7.94%。薄晶圆是厚度显着减小的半导体基板,通常从几μm到小于100μm。硅等超薄半导体材料切片是积体电路(IC)和各种电子机械系统(MEMS)製造中的基本组件。薄晶圆的需求主要是由家用电子电器市场对更薄、更强大的设备的需求所推动的。此外,半导体技术的进步、物联网设备的普及以及汽车产业向电动和自动驾驶汽车的转变也推动了对薄晶圆的需求。此外,晶圆加工技术的创新可以在不牺牲耐用性或功能的情况下实现更薄的基板,这也推动了市场的成长。然而,晶圆减薄製程的技术限制可能会影响半导体装置的完整性和性能。此外,严格的环境法规影响半导体材料的生产和处置。然而,主要参与者正在开发具有成本效益且环保的晶圆製造工艺,以符合永续性法规和标准。此外,我们正在探索硅的潜在替代品,以更低的成本和环境影响提供类似或增强的性能,并提高薄晶圆的机械强度,以减少製造和组装中的损坏,从而为硅提供新的成长途径。主要市场统计基准年[2023]104.7亿美元预测年份[2024]113亿美元预测年份[2030]178.9亿美元复合年增长率(%)7.94%研磨製程不断改进,使技术晶圆厚度与电子设备的精确要求相匹配切割是将晶圆切割或划片成单一晶粒或晶片的过程,然后用于各种电子设备。此製程需要高精度,以避免损坏晶圆上的电路。现代切割技术包括隐形切割和雷射切割,这两种技术都旨在减少机械应力并提高可用晶片的产量比率。切割对于晶圆上积体电路(IC)的分离至关重要,并决定了半导体装置的最终输出和功能。电路製造后,研磨用于减薄晶圆。这是实现所需厚度的重要步骤,特别是对于需要薄型材以实现高效散热或弹性的设备。此製程使用研磨材料以机械方式减少晶圆的厚度。这是一项艰鉅的任务,需要精确控制,以防止晶圆破裂或变得太薄,导致晶片无法使用。选择正确的研磨和轮圈对于保持晶圆主动层的完整性非常重要。研磨后的晶圆表面可能会出现微裂纹和其他缺陷,从而影响晶片性能。抛光或化学机械平坦化(CMP)是一种使晶圆表面光滑并消除这些缺陷的製程。此步骤对于确保半导体装置的功能和可靠性至关重要,并为后续製造步骤中的复杂材料分层准备晶圆。应用对支援先进3D配置的储存晶片中的薄晶圆的新兴需求CMOS影像感测器(CIS)技术可提高成像性能,并透过薄晶圆加工实现更智慧的设备设计。更薄的晶圆使背照式技术成为可能,从而提高小型相机模组中的光收集效率和影像品质。中介层,特别是用于3D整合技术的中介层,利用薄晶圆提供连接多个半导体装置的平台,在减少空间的同时提高电气性能。此应用中的薄晶圆有助于实现更高密度的互连和更好的温度控管。在高亮度LED的生产中,采用薄晶圆来提高光提取和热性能。此应用利用厚度减小的优势,最大限度地减少缺陷并提高LED装置的效率和寿命。随着执行基本运算功能的逻辑晶片朝向更小的几何形状和3D结构发展,它们越来越多地使用薄晶圆。薄晶圆可实现更高的封装密度和更快的讯号传输速率。晶圆更薄的趋势旨在提高处理器速度并降低功耗。包括3DNAND快闪记忆体存在内的记忆体技术的进步,利用薄晶圆垂直堆迭记忆体单元,显着增加储存容量,同时减少占地面积。这种方法需要对晶圆进行精确减薄,以确保可靠性和性能。微机电系统(MEMS)装置整合了机械和电气元件,在灵敏度、可靠性和外形尺寸方面受益于薄晶圆技术。更薄的外形有利于MEMS与其他半导体装置的集成,并扩大了应用潜力。无线通讯必不可少的射频设备使用薄晶圆来减少讯号损失并提高设备效率。薄度对于高频应用至关重要,可以实现更小、更强大的设备。区域洞察美洲地区在半导体和电子设备领域取得了多项进展,其特点是拥有强大且高度发展的技术框架。美国是硅谷的所在地,许多新兴企业和老牌公司正在推动晶圆技术的进步。北美市场的特点是对先进消费性电子产品、电动车和可再生能源技术的高需求,这正在影响薄晶圆的规格和应用。欧盟(EU)国家在汽车、可再生能源和物联网等产业中表现出对永续性和采用先进技术的强烈倾向,推动了对先进薄晶圆解决方案的需求。欧盟的研究和创新框架,加上学术机构和半导体产业之间的合作,正在加速这一领域的发展。有关电子和半导体品质和性能的严格法规和标准的存在也为薄晶圆的发展提供了标准化框架。中东地区重点关注石油以外的多元化,正在投资半导体等技术,创造新的机会。亚太地区凭藉其强劲的半导体产业占据了全球薄晶圆市场的大部分。由于家用电子电器的高需求以及政府对半导体製造的支持,中国、日本和印度等主要国家处于领先地位。作为世界製造地的中国和印度对行动装置、穿戴式装置和汽车的薄晶圆表现出巨大的需求。由于其蓬勃发展的电子市场和提高半导体生产的倡议,印度正在经历快速成长。FPNV定位矩阵FPNV定位矩阵对于评估薄晶圆市场至关重要。我们检视与业务策略和产品满意度相关的关键指标,以对供应商进行全面评估。这种深入的分析使用户能够根据自己的要求做出明智的决策。根据评估,供应商被分为四个成功程度不同的像限:前沿(F)、探路者(P)、利基(N)和重要(V)。市场占有率分析市场占有率分析是一种综合工具,可以对薄晶圆市场供应商的现状进行深入而深入的研究。全面比较和分析供应商在整体收益、基本客群和其他关键指标方面的贡献,以便更好地了解公司的绩效及其在争夺市场占有率时面临的挑战。此外,该分析还提供了对该行业竞争特征的宝贵见解,包括在研究基准年观察到的累积、分散主导地位和合併特征等因素。详细程度的提高使供应商能够做出更明智的决策并制定有效的策略,从而在市场上获得竞争优势。本报告在以下方面提供了宝贵的见解:1.市场渗透率:提供有关主要企业所服务的市场的全面资讯。2.市场开拓:我们深入研究利润丰厚的新兴市场,并分析其在成熟细分市场的渗透率。3.市场多元化:提供有关新产品发布、开拓地区、最新发展和投资的详细资讯。4.竞争评估与资讯:对主要企业的市场占有率、策略、产品、认证、监管状况、专利状况、製造能力等进行全面评估。5.产品开发与创新:提供对未来技术、研发活动和突破性产品开发的见解。本报告解决了以下关键问题:更多详情,请W:chenyu-zl,获取报告样品和报价汽车行业分析专家,8年汽车行业研究经验,逻辑性强,数据敏感度较高。合作伙伴:道依茨、采埃孚、大陆集团、三菱重工、沃尔沃、米其林等。1.薄晶圆市场规模及预测如何?2.在薄晶圆市场的预测期间内,有哪些产品、细分市场、应用和领域需要考虑投资?3.薄晶圆市场的技术趋势和法规结构是什么?4.薄晶圆市场主要厂商的市场占有率为何?5.进入薄晶圆市场的合适型态和策略手段是什么?目录第一章前言第二章调查方法第三章执行摘要第四章市场概况第五章市场洞察市场动态促进因素晶圆减薄技术、材料科学和晶片设计的进步3D封装技术介绍半导体产业的快速发展和装置的小型化抑制因素薄晶圆难以保持效率机会半导体装置的应用正在物联网、人工智慧、汽车和医疗保健等领域扩大。人们越来越关注可携式和穿戴式电子产品任务担心高压损坏的可能性增加市场区隔分析技术:改良研磨工艺,根据电子产品的具体要求客製化晶圆厚度应用:对支援先进3D配置的记忆体晶片薄晶圆的新兴需求市场扰动分析波特五力分析价值炼和关键路径分析价格分析技术分析专利分析贸易分析法规结构分析第六章薄晶圆市场:依技术分类骰子研磨抛光第七章依晶圆尺寸分類的薄晶圆市场125毫米200毫米300毫米第八章薄晶圆市场:依製程分类无载体/太鼓工艺临时黏合和剥离第九章薄晶圆市场:依应用分类CMOS影像感测器内插器引导的逻辑记忆微电子机械系统射频装置第十章美洲薄晶圆市场阿根廷巴西加拿大墨西哥美国第十一章亚太地区薄晶圆市场澳洲中国印度印尼日本马来西亚菲律宾新加坡韩国台湾泰国越南第十二章欧洲、中东和非洲薄晶圆市场丹麦埃及芬兰法国德国以色列义大利荷兰奈及利亚挪威波兰卡达俄罗斯沙乌地阿拉伯南非西班牙瑞典瑞士土耳其阿拉伯聯合大公国英国第十三章竞争格局2023年市场占有率分析FPNV定位矩阵,2023竞争情境分析东京威力科创推出用于300mm晶圆製造的晶圆减薄设备“UlucusG”我国12吋2D半导体晶圆量产取得突破瑞萨电子与Wolfspeed签署为期10年的SiC晶圆协议战略分析和建议第14章竞争组合主要企业简介主要产品系列简介目录图表ProductCode:MRR-4F4C3626368A[188PagesReport]TheThinWaferMarketsizewasestimatedatUSD10.47billionin2023andexpectedtoreachUSD11.30billionin2024,ataCAGR7.94%toreachUSD17.89billionby2030.Athinwaferreferstoasemiconductorsubstratewithasignificantlyreducedthickness,typicallyrangingfromafewmicrometerstolessthan100micrometers.Theseultra-thinslicesofsemiconductormaterial,suchassilicon,arefoundationalcomponentsinthefabricationofintegratedcircuits(ICs)andvariousmicroelectromechanicalsystems(MEMS).Thedemandforthinwafersisprimarilydrivenbytheconsumerelectronicsmarket'sneedforthinner,morepowerfuldevices.Furthermore,advancementsinsemiconductortechnology,theproliferationofIoTdevices,andtheautomotiveindustry'sshifttowardselectricandautonomousvehicleshavealsopropelledtheneedforthinwafers.Additionally,innovationsinwaferprocessingtechniquesthatallowforthinnersubstrateswithoutsacrificingdurabilityorfunctionalityhavealsobolsteredmarketgrowth.However,technicallimitationsinwaferthinningprocessesmayaffecttheintegrityandperformanceofsemiconductordevices.Furthermore,stringentenvironmentalregulationsimpacttheproductionanddisposalofsemiconductormaterials.However,keyplayersaredevelopingcost-effectiveandenvironmentallyfriendlywafermanufacturingprocessestocomplywithsustainabilityregulationsandstandards.Additionally,exploringalternativematerialsthatcouldsubstitutesilicon,offeringsimilarorenhancedpropertiesatareducedcostorenvironmentalimpact,andinnovationstoenhancethemechanicalstrengthofthinwaferstopreventdamageduringmanufacturingandassemblycanprovidenewavenuesofgrowthfortheindustry.KEYMARKETSTATISTICSBaseYear[2023]USD10.47billionEstimatedYear[2024]USD11.30billionForecastYear[2030]USD17.89billionCAGR(%)7.94%Technology:Advancementstoimprovethegrindingprocessinordertopreparethewafer'sthicknessfortheprecisedemandsofelectronicdevicesDicingistheprocessofcuttingorscribingthewaferintoindividualdiesorchips,whichcanthenbeusedinvariouselectronicdevices.Thisprocessrequireshighprecisiontoavoiddamagingthecircuitsonthewafer.Moderndicingtechniquesincludestealthdicingandlaserdicing,bothofwhichaimtoreducemechanicalstressandimprovetheyieldofusablechips.Dicingiscriticalfortheseparationofintegratedcircuits(ICs)onthewafer,dictatingthefinaloutputandfunctionalityofsemiconductordevices.Grindingisusedtothindownthewaferafterthefabricationofcircuits.It'sanessentialsteptoachievethedesiredthickness,especiallyfordevicesthatrequirethinprofilesforefficientheatdissipationorflexibility.Thisprocessinvolvesmechanicallyreducingthewafer'sthicknessusingabrasivematerials.Itisachallengingprocessthatrequiresprecisecontroltopreventthewaferfrombreakingorbecomingtoothin,whichcouldrenderthechipsunusable.Choosingthecorrectgrindingwheelandparametersiscrucialformaintainingtheintegrityofthewafer'sactivelayer.Aftergrinding,thewafersurfacesmayhavemicro-cracksorotherdefectsthatcouldimpairtheperformanceofthechips.Polishing,orchemicalmechanicalplanarization(CMP),isaprocessthatsmoothensthewafer'ssurface,removingtheseimperfections.Thisstepisvitalforensuringthefunctionalityandreliabilityofthesemiconductordevices,asitpreparesthewaferforthecomplexlayeringofmaterialsinsubsequentmanufacturingstages.Application:Emergingneedforthinwafersinmemorychipstosupportadvanced3DconfigurationsCMOSimagesensor(CIS)technologybenefitssignificantlyfromthinwaferprocessingtoenhanceimagingperformanceandenablesleekerdevicedesigns.Thinningthewaferallowsforbacksideilluminationtechnology,whichimproveslightcollectionefficiencyandimagequalityincompactcameramodules.Interposers,particularlythoseutilizedin3Dintegrationtechnologies,relyonthinwaferstoprovideaplatformforconnectingmultiplesemiconductordevices,improvingelectricalperformancewhilereducingspace.Thinwafersinthisapplicationfacilitatedenserinterconnectionsandbetterthermalmanagement.Intheproductionofhigh-brightnessLEDs,thinwafersareemployedtoenhancelightextractionandthermalperformance.ThisapplicationleveragesthereducedthicknesstominimizedefectsandimprovetheefficiencyandlongevityofLEDdevices.Logicchips,whichperformbasiccomputationalfunctions,areincreasinglyleveragingthinwafersastheymovetowardssmallergeometriesand3Dstructures.Thinwafersenablehigherpackingdensityandfastersignaltransmissionspeeds.Thetrendtowardsthinnerwafersaimstoenhanceprocessorspeedandreducepowerconsumption.Advancementsinmemorytechnology,including3DNANDflash,utilizethinwaferstostackmemorycellsvertically,significantlyincreasingstoragecapacitywhilereducingfootprint.Thisapproachrequiresprecisewaferthinningtoensurereliabilityandperformance.Micro-electromechanicalsystems(MEMS)devicesintegratemechanicalandelectricalcomponentsandbenefitsignificantlyfromthinwafertechnologyintermsofsensitivity,reliability,andformfactor.ThinningfacilitatestheintegrationofMEMSwithothersemiconductordevices,expandingtheirapplicationpotential.RFdevices,essentialforwirelesscommunication,usethinwaferstoreducesignallossandimprovedeviceefficiency.Thereducedthicknessiscriticalforhigh-frequencyapplications,enablingsmaller,morepowerfuldevices.RegionalInsightsTheAmericasregionfeaturesarobustandhighlydevelopedtechnologicalframeworkwithseveraladvancementsintherealmofsemiconductorsandelectronicdevices.ThepresenceofSiliconValleyintheU.S.presentsaconducivelandscapeforinnovationswherenumerousstartupsandestablishedcompaniesdriveadvancementsinwafertechnology.NorthAmerica'smarketisdistinctlycharacterizedbyhighdemandforadvancedconsumerelectronics,electricvehicles,andrenewableenergytechnologies,influencingthinwaferspecificationsandusage.EuropeanUnion(EU)countriesshowastronginclinationtowardssustainabilityandadvancedtechnologyadoptioninindustriessuchasautomotive,renewableenergy,andIoT,whichfuelsthedemandforsophisticatedthinwafersolutions.TheEU'sframeworkforresearchandinnovation,coupledwithcollaborationbetweenacademicinstitutionsandthesemiconductorindustry,acceleratesdevelopmentsinthissector.Thepresenceofstringentregulationsandstandardspertainingtothequalityandperformanceofelectronicdevicesandsemiconductorsalsoprovidesastandardizedframeworkfortheprogressofthinwafers.TheMiddleEast,withitsgrowingemphasisondiversificationfromoil,isinvestingintechnologysectors,includingsemiconductors,presentingnewopportunities.TheAsiaPacificregionrepresentsasignificantportionoftheglobalthinwafermarket,attributedtoitsrobustsemiconductorindustry.LeadingcountriessuchasChina,Japan,andIndiaareattheforefront,drivenbyhighconsumerelectronicsdemandandgovernmentalsupportforsemiconductormanufacturing.ChinaandIndia,beingglobalmanufacturinghubs,showcasemassivedemandforthinwafersinmobiledevices,wearables,andautomobiles.Indiaisexperiencingrapidgrowthduetoitsburgeoningelectronicsmarketandinitiativestoboostsemiconductorproduction.FPNVPositioningMatrixTheFPNVPositioningMatrixispivotalinevaluatingtheThinWaferMarket.Itoffersacomprehensiveassessmentofvendors,examiningkeymetricsrelatedtoBusinessStrategyandProductSatisfaction.Thisin-depthanalysisempowersuserstomakewell-informeddecisionsalignedwiththeirrequirements.Basedontheevaluation,thevendorsarethencategorizedintofourdistinctquadrantsrepresentingvaryinglevelsofsuccess:Forefront(F),Pathfinder(P),Niche(N),orVital(V).MarketShareAnalysisTheMarketShareAnalysisisacomprehensivetoolthatprovidesaninsightfulandin-depthexaminationofthecurrentstateofvendorsintheThinWaferMarket.Bymeticulouslycomparingandanalyzingvendorcontributionsintermsofoverallrevenue,customerbase,andotherkeymetrics,wecanoffercompaniesagreaterunderstandingoftheirperformanceandthechallengestheyfacewhencompetingformarketshare.Additionally,thisanalysisprovidesvaluableinsightsintothecompetitivenatureofthesector,includingfactorssuchasaccumulation,fragmentationdominance,andamalgamationtraitsobservedoverthebaseyearperiodstudied.Withthisexpandedlevelofdetail,vendorscanmakemoreinformeddecisionsanddeviseeffectivestrategiestogainacompetitiveedgeinthemarket.KeyCompanyProfilesThereportdelvesintorecentsignificantdevelopmentsintheThinWaferMarket,highlightingleadingvendorsandtheirinnovativeprofiles.Theseinclude3MCompany,AixtronSE,AtecomTechnologyCo.,Ltd.,BrewerScience,Inc.,ChipmetricsOy,DISCOCorporation,EVGroup,GlobalwafersCo.,Ltd.,HangzhouSemiconductorWaferCo.,Ltd.,LDKSolarHigh-TechCo.,Ltd.,OkmeticOy,ROHMCo.,Ltd.byKYOCERAAVX,Shin-EtsuChemicalCo.,Ltd.,SiltronicAG,SiltronixSiliconTechnologies,SKSiltronCo.,Ltd.,Soitec,SPTSTechnologiesLtd.,SumcoCorporation,SUSSMicroTecSE,UniversityWafer,Inc.,VirginiaSemiconductorInc.,andWaferWorldInc..MarketSegmentation&CoverageThisresearchreportcategorizestheThinWaferMarkettoforecasttherevenuesandanalyzetrendsineachofthefollowingsub-markets:TechnologyDicingGrindingPolishingWaferSize125mm200mm300mmProcessCarrier-less/TaikoProcessTemporaryBonding&DebondingApplicationCMOSImageSensorInterposerLEDLogicMemoryMicro-ElectromechanicalSystemRFDevicesRegionAmericasArgentinaBrazilCanadaMexicoUnitedStatesCaliforniaFloridaIllinoisNewYorkOhioPennsylvaniaTexasAsia-PacificAustraliaChinaIndiaIndonesiaJapanMalaysiaPhilippinesSingaporeSouthKoreaTaiwanThailandVietnamEurope,MiddleEast&AfricaDenmarkEgyptFinlandFranceGermanyIsraelItalyNetherlandsNigeriaNorwayPolandQatarRussiaSaudiArabiaSouthAfricaSpainSwedenSwitzerlandTurkeyUnitedArabEmiratesUnitedKingdomThereportoffersvaluableinsightsonthefollowingaspects:1.MarketPenetration:Itpresentscomprehensiveinformationonthemarketprovidedbykeyplayers.2.MarketDevelopment:Itdelvesdeepintolucrativeemergingmarketsandanalyzesthepenetrationacrossmaturemarketsegments.3.MarketDiversification:Itprovidesdetailedinformationonnewproductlaunches,untappedgeographicregions,recentdevelopments,andinvestments.4.CompetitiveAssessment&Intelligence:Itconductsanexhaustiveassessmentofmarketshares,strategies,products,certifications,regulatoryapprovals,patentlandscape,andmanufacturingcapabilitiesoftheleadingplayers.5.ProductDevelopment&Innovation:Itoffersintelligentinsightsonfuturetechnologies,R&Dactivities,andbreakthroughproductdevelopments.Thereportaddresseskeyquestionssuchas:1.WhatisthemarketsizeandforecastoftheThinWaferMarket?2.Whichproducts,segments,applications,andareasshouldoneconsiderinvestinginovertheforecastperiodintheThinWaferMarket?3.WhatarethetechnologytrendsandregulatoryframeworksintheThinWaferMarket?4.WhatisthemarketshareoftheleadingvendorsintheThinWaferMarket?5.WhichmodesandstrategicmovesaresuitableforenteringtheThinWaferMarket?TableofContents1.Preface1.1.ObjectivesoftheStudy1.2.MarketSegmentation&Coverage1.3.YearsConsideredfortheStudy1.4.Currency&Pricing1.5.Language1.6.Stakeholders2.ResearchMethodology2.1.Define:ResearchObjective2.2.Determine:ResearchDesign2.3.Prepare:ResearchInstrument2.4.Collect:DataSource2.5.Analyze:DataInterpretation2.6.Formulate:DataVerification2.7.Publish:ResearchReport2.8.Repeat:ReportUpdate3.ExecutiveSummary4.MarketOverview5.MarketInsights5.1.MarketDynamics5.1.1.Drivers.Advancementsinwaferthinningtechnologies,materialscience,andchipdesign.Adoptionof3Dpackagingtechnologies.Proliferatinggrowthofsemiconductorindustryandminiaturizationdevices5.1.2.Restraints.Difficultiesinefficiencymaintenanceofthinwafers5.1.3.Opportunities.ExpandingapplicationsofsemiconductordevicesinareassuchasIoT,AI,automotive,andhealthcare.Growingfocustowardstheportableandwearableelectronicdevices5.1.4.Challenges.Concernsofmorevulnerabletodamagescausedbyhighpressure5.2.MarketSegmentationAnalysis5.2.1.Technology:Advancementstoimprovethegrindingprocessinordertopreparethewafer'sthicknessfortheprecisedemandsofelectronicdevices5.2.2.Application:Emergingneedforthinwafersinmemorychipstosupportadvanced3Dconfigurations5.3.MarketDisruptionAnalysis5.4.Porter'sFiveForcesAnalysis5.4.1.ThreatofNewEntrants5.4.2.ThreatofSubstitutes5.4.3.BargainingPowerofCustomers5.4.4.BargainingPowerofSuppliers5.4.5.IndustryRivalry5.5.ValueChain&CriticalPathAnalysis5.6.PricingAnalysis5.7.TechnologyAnalysis5.8.PatentAnalysis5.9.TradeAnalysis5.10.RegulatoryFrameworkAnalysis6.ThinWaferMarket,byTechnology6.1.Introduction6.2.Dicing6.3.Grinding6.4.Polishing7.ThinWaferMarket,byWaferSize7.1.Introduction7.2.125mm7.3.200mm7.4.300mm8.ThinWaferMarket,byProcess8.1.Introduction8.2.Carrier-less/TaikoProcess8.3.TemporaryBonding&Debonding9.ThinWaferMarket,byApplication9.1.Introduction9.2.CMOSImageSensor9.3.Interposer9.4.LED9.5.Logic9.6.Memory9.7.Micro-ElectromechanicalSystem9.8.RFDevices10.AmericasThinWaferMarket10.1.Introduction10.2.Argentina10.3.Brazil10.4.Canada10.5.Mexico10.6.UnitedStates11.Asia-PacificThinWaferMarket11.1.Introduction11.2.Australia11.3.China11.4.India11.5.Indonesia11.6.Japan11.7.Malaysia11.8.Philippines11.9.Singapore11.10.SouthKorea11.11.Taiwan11.12.Thailand11.13.Vietnam12.Europe,MiddleEast&AfricaThinWaferMarket12.1.Introduction12.2.Denmark12.3.Egypt12.4.Finland12.5.France12.6.Germany12.7.Israel12.8.Italy12.9.Netherlands12.10.Nigeria12.11.Norway12.12.Poland12.13.Qatar12.14.Russia12.15.SaudiArabia12.16.SouthAfrica12.17.Spain12.18.Sweden12.19.Switzerland12.20.Turkey12.21.UnitedArabEmirates12.22.UnitedKingdom13.CompetitiveLandscape13.1.MarketShareAnalysis,202313.2.FPNVPositioningMatrix,202313.3.CompetitiveScenarioAnalysis13.3.1.TokyoElectronLaunchesUlucusG,aWaferThinningSystemfor300mmWaferFabrication13.3.2.ChinaMakesBreakthroughInMassProductionof12-inch2DSemiconductorWafer13.3.3.RenesasandWolfspeedSign10YearSiCWaferAgreement13.4.StrategyAnalysis&Recommendation14.CompetitivePortfolio14.1.KeyCompanyProfiles14.2.KeyProductPortfolio简介目录图表LISTOFFIGURESFIGURE1.THINWAFERMARKETRESEARCHPROCESSFIGURE2.THINWAFERMARKETSIZE,2023VS2030FIGURE3.GLOBALTHINWAFERMARKETSIZE,2018-2030(USDMILLION)FIGURE4.GLOBALTHINWAFERMARKETSIZE,BYREGION,2023VS2030(%)FIGURE5.GLOBALTHINWAFERMARKETSIZE,BYREGION,2023VS2024VS2030(USDMILLION)FIGURE6.THINWAFERMARKETDYNAMICSFIGURE7.GLOBALTHINWAFERMARKETSIZE,BYTECHNOLOGY,2023VS2030(%)FIGURE8.GLOBALTHINWAFERMARKETSIZE,BYTECHNOLOGY,2023VS2024VS2030(USDMILLION)FIGURE9.GLOBALTHINWAFERMARKETSIZE,BYWAFERSIZE,2023VS2030(%)FIGURE10.GLOBALTHINWAFERMARKETSIZE,BYWAFERSIZE,2023VS2024VS2030(USDMILLION)FIGURE11.GLOBALTHINWAFERMARKETSIZE,BYPROCESS,2023VS2030(%)FIGURE12.GLOBALTHINWAFERMARKETSIZE,BYPROCESS,2023VS2024VS2030(USDMILLION)FIGURE13.GLOBALTHINWAFERMARKETSIZE,BYAPPLICATION,2023VS2030(%)FIGURE14.GLOBALTHINWAFERMARKETSIZE,BYAPPLICATION,2023VS2024VS2030(USDMILLION)FIGURE15.AMERICASTHINWAFERMARKETSIZE,BYCOUNTRY,2023VS2030(%)FIGURE16.AMERICASTHINWAFERMARKETSIZE,BYCOUNTRY,2023VS2024VS2030(USDMILLION)FIGURE17.UNITEDSTATESTHINWAFERMARKETSIZE,BYSTATE,2023VS2030(%)FIGURE18.UNITEDSTATESTHINWAFERMARKETSIZE,BYSTATE,2023VS2024VS2030(USDMILLION)FIGURE19.ASIA-PACIFICTHINWAFERMARKETSIZE,BYCOUNTRY,2023VS2030(%)FIGURE20.ASIA-PACIFICTHINWAFERMARKETSIZE,BYCOUNTRY,2023VS2024VS2030(USDMILLION)FIGURE21.EUROPE,MIDDLEEAST&AFRICATHINWAFERMARKETSIZE,BYCOUNTRY,2023VS2030(%)FIGURE22.EUROPE,MIDDLEEAST&AFRICATHINWAFERMARKETSIZE,BYCOUNTRY,2023VS2024VS2030(USDMILLION)FIGURE23.THINWAFERMARKETSHARE,BYKEYPLAYER,2023FIGURE24.THINWAFERMARKET,FPNVPOSITIONINGMATRIX,2023LISTOFTABLESTABLE1.THINWAFERMARKETSEGMENTATION&COVERAGETABLE2.UNITEDSTATESDOLLAREXCHANGERATE,2018-2023TABLE3.GLOBALTHINWAFERMARKETSIZE,2018-2023(USDMILLION)TABLE4.GLOBALTHINWAFERMARKETSIZE,2024-2030(USDMILLION)TABLE5.GLOBALTHINWAFERMARKETSIZE,BYREGION,2018-2023(USDMILLION)TABLE6.GLOBALTHINWAFERMARKETSIZE,BYREGION,2024-2030(USDMILLION)TABLE7.GLOBALTHINWAFERMARKETSIZE,BYTECHNOLOGY,2018-2023(USDMILLION)TABLE8.GLOBALTHINWAFERMARKETSIZE,BYTECHNOLOGY,2024-2030(USDMILLION)TABLE9.GLOBALTHINWAFERMARKETSIZE,BYDICING,BYREGION,2018-2023(USDMILLION)TABLE10.GLOBALTHINWAFERMARKETSIZE,BYDICING,BYREGION,2024-2030(USDMILLION)TABLE11.GLOBALTHINWAFERMARKETSIZE,BYGRINDING,BYREGION,2018-2023(USDMILLION)TABLE12.GLOBALTHINWAFERMARKETSIZE,BYGRINDING,BYREGION,2024-2030(USDMILLION)TABLE13.GLOBALTHINWAFERMARKETSIZE,BYPOLISHING,BYREGION,2018-2023(USDMILLION)TABLE14.GLOBALTHINWAFERMARKETSIZE,BYPOLISHING,BYREGION,2024-2030(USDMILLION)TABLE15.GLOBALTHINWAFERMARKETSIZE,BYWAFERSIZE,2018-2023(USDMILLION)TABLE16.GLOBALTHINWAFERMARKETSIZE,BYWAFERSIZE,2024-2030(USDMILLION)TABLE17.GLOBALTHINWAFERMARKETSIZE,BY125MM,BYREGION,2018-2023(USDMILLION)TABLE18.GLOBALTHINWAFERMARKETSIZE,BY125MM,BYREGION,2024-2030(USDMILLION)TABLE19.GLOBALTHINWAFERMARKETSIZE,BY200MM,BYREGION,2018-2023(USDMILLION)TABLE20.GLOBALTHINWAFERMARKETSIZE,BY200MM,BYREGION,2024-2030(USDMILLION)TABLE21.GLOBALTHINWAFERMARKETSIZE,BY300MM,BYREGION,2018-2023(USDMILLION)TABLE22.GLOBALTHINWAFERMARKETSIZE,BY300MM,BYREGION,2024-2030(USDMILLION)TABLE23.GLOBALTHINWAFERMARKETSIZE,BYPROCESS,2018-2023(USDMILLION)TABLE24.GLOBALTHINWAFERMARKETSIZE,BYPROCESS,2024-2030(USDMILLION)TABLE25.GLOBALTHINWAFERMARKETSIZE,BYCARRIER-LESS/TAIKOPROCESS,BYREGION,2018-2023(USDMILLION)TABLE26.GLOBALTHINWAFERMARKETSIZE,BYCARRIER-LESS/TAIKOPROCESS,BYREGION,2024-2030(USDMILLION)TABLE27.GLOBALTHINWAFERMARKETSIZE,BYTEMPORARYBONDING&DEBONDING,BYREGION,2018-2023(USDMILLION)TABLE28.GLOBALTHINWAFERMARKETSIZE,BYTEMPORARYBONDING&DEBONDING,BYREGION,2024-2030(USDMILLION)TABLE29.GLOBALTHINWAFERMARKETSIZE,BYAPPLICATION,2018-2023(USDMILLION)TABLE30.GLOBALTHINWAFERMARKETSIZE,BYAPPLICATION,2024-2030(USDMILLION)TABLE31.GLOBALTHINWAFERMARKETSIZE,BYCMOSIMAGESENSOR,BYREGION,2018-2023(USDMILLION)TABLE32.GLOBALTHINWAFERMARKETSIZE,BYCMOSIMAGESENSOR,BYREGION,2024-2030(USDMILLION)TABLE33.GLOBALTHINWAFERMARKETSIZE,BYINTERPOSER,BYREGION,2018-2023(USDMILLION)TABLE34.GLOBALTHINWAFERMARKETSIZE,BYINTERPOSER,BYREGION,2024-2030(USDMILLION)TABLE35.GLOBALTHINWAFERMARKETSIZE,BYLED,BYREGION,2018-2023(USDMILLION)TABLE36.GLOBALTHINWAFERMARKETSIZE,BYLED,BYREGION,2024-2030(USDMILLION)TABLE37.GLOBALTHINWAFERMARKETSIZE,BYLOGIC,BYREGION,2018-2023(USDMILLION)TABLE38.GLOBALTHINWAFERMARKETSIZE,BYLOGIC,BYREGION,2024-2030(USDMILLION)TABLE39.GLOBALTHINWAFERMARKETSIZE,BYMEMORY,BYREGION,2018-2023(USDMILLION)TABLE40.GLOBALTHINWAFERMARKETSIZE,BYMEMORY,BYREGION,2024-2030(USDMILLION)TABLE41.GLOBALTHINWAFERMARKETSIZE,BYMICRO-ELECTROMECHANICALSYSTEM,BYREGION,2018-2023(USDMILLION)TABLE42.GLOBALTHINWAFERMARKETSIZE,BYMICRO-ELECTROMECHANICALSYSTEM,BYREGION,2024-2030(USDMILLION)TABLE43.GLOBALTHINWAFERMARKETSIZE,BYRFDEVICES,BYREGION,2018-2023(USDMILLION)TABLE44.GLOBALTHINWAFERMARKETSIZE,BYRFDEVICES,BYREGION,2024-2030(USDMILLION)TABLE45.AMERICASTHINWAFERMARKETSIZE,BYTECHNOLOGY,2018-2023(USDMILLION)TABLE46.AMERICASTHINWAFERMARKETSIZE,BYTECHNOLOGY,2024-2030(USDMILLION)TABLE47.AMERICASTHINWAFERMARKETSIZE,BYWAFERSIZE,2018-2023(USDMILLION)TABLE48.AMERICASTHINWAFERMARKETSIZE,BYWAFERSIZE,2024-2030(USDMILLION)TABLE49.AMERICASTHINWAFERMARKETSIZE,BYPROCESS,2018-2023(USDMILLION)TABLE50.AMERICASTHINWAFERMARKETSIZE,BYPROCESS,2024-2030(USDMILLION)TABLE51.AMERICASTHINWAFERMARKETSIZE,BYAPPLICATION,2018-2023(USDMILLION)TABLE52.AMERICASTHINWAFERMARKETSIZE,BYAPPLICATION,2024-2030(USDMILLION)TABLE53.AMERICASTHINWAFERMARKETSIZE,BYCOUNTRY,2018-2023(USDMILLION)TABLE54.AMERICASTHINWAFERMARKETSIZE,BYCOUNTRY,2024-2030(USDMILLION)TABLE55.ARGENTINATHINWAFERMARKETSIZE,BYTECHNOLOGY,2018-2023(USDMILLION)TABLE56.ARGENTINATHINWAFERMARKETSIZE,BYTECHNOLOGY,2024-2030(USDMILLION)TABLE57.ARGENTINATHINWAFERMARKETSIZE,BYWAFERSIZE,2018-2023(USDMILLION)TABLE58.ARGENTINATHINWAFERMARKETSIZE,BYWAFERSIZE,2024-2030(USDMILLION)TABLE59.ARGENTINATHINWAFERMARKETSIZE,BYPROCESS,2018-2023(USDMILLION)TABLE60.ARGENTINATHINWAFERMARKETSIZE,BYPROCESS,2024-2030(USDMILLION)TABLE61.ARGENTINATHINWAFERMARKETSIZE,BYAPPLICATION,2018-2023(USDMILLION)TABLE62.ARGENTINATHINWAFERMARKETSIZE,BYAPPLICATION,2024-2030(USDMILLION)TABLE63.BRAZILTHINWAFERMARKETSIZE,BYTECHNOLOGY,2018-2023(USDMILLION)TABLE64.BRAZILTHINWAFERMARKETSIZE,BYTECHNOLOGY,2024-2030(USDMILLION)TABLE65.BRAZILTHINWAFERMARKETSIZE,BYWAFERSIZE,2018-2023(USDMILLION)TABLE66.BRAZILTHINWAFERMARKETSIZE,BYWAFERSIZE,2024-2030(USDMILLION)TABLE67.BRAZILTHINWAFERMARKETSIZE,BYPROCESS,2018-2023(USDMILLION)TABLE68.BRAZILTHINWAFERMARKETSIZE,BYPROCESS,2024-2030(USDMILLION)TABLE69.BRAZILTHINWAFERMARKETSIZE,BYAPPLICATION,2018-2023(USDMILLION)TABLE70.BRAZILTHINWAFERMARKETSIZE,BYAPPLICATION,2024-2030(USDMILLION)TABLE71.CANADATHINWAFERMARKETSIZE,BYTECHNOLOGY,2018-2023(USDMILLION)TABLE72.CANADATHINWAFERMARKETSIZE,BYTECHNOLOGY,2024-2030(USDMILLION)TABLE73.CANADATHINWAFERMARKETSIZE,BYWAFERSIZE,2018-2023(USDMILLION)TABLE74.CANADATHINWAFERMARKETSIZE,BYWAFERSIZE,2024-2030(USDMILLION)TABLE75.CANADATHINWAFERMARKETSIZE,BYPROCESS,2018-2023(USDMILLION)TABLE76.CANADATHINWAFERMARKETSIZE,BYPROCESS,2024-2030(USDMILLION)TABLE77.CANADATHINWAFERMARKETSIZE,BYAPPLICATION,2018-2023(USDMILLION)TABLE78.CANADATHINWAFERMARKETSIZE,BYAPPLICATION,2024-2030

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论