2022届广西来宾市忻城县重点名校毕业升学考试模拟卷数学卷含解析_第1页
2022届广西来宾市忻城县重点名校毕业升学考试模拟卷数学卷含解析_第2页
2022届广西来宾市忻城县重点名校毕业升学考试模拟卷数学卷含解析_第3页
2022届广西来宾市忻城县重点名校毕业升学考试模拟卷数学卷含解析_第4页
2022届广西来宾市忻城县重点名校毕业升学考试模拟卷数学卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022届广西来宾市忻城县重点名校毕业升学考试模拟卷数学卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.计算的结果是().A. B. C. D.2.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°3.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为()A.15m B.17m C.18m D.20m4.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.5.以下各图中,能确定的是()A. B. C. D.6.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,67.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A. B. C. D.8.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A.2πcm B.4πcm C.6πcm D.8πcm9.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过(

)A.第一象限B.第二象限C.第三象限D.第四象限10.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或4二、填空题(共7小题,每小题3分,满分21分)11.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE.下列结论①BE平分∠ABC;②AE=BE=BC;③△BEC周长等于AC+BC;④E点是AC的中点.其中正确的结论有_____(填序号)12.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点D、E分别在边AC、BC上,且CD:CE=3︰1.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.13.八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg.14.计算:(2018﹣π)0=_____.15.已知直线与抛物线交于A,B两点,则_______.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.

17.如果关于x的方程x2+kx+34k2-3k+9三、解答题(共7小题,满分69分)18.(10分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=1.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.19.(5分)计算:(1-n)0-|3-2|+(-)-1+4cos30°.20.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.21.(10分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是度.若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.22.(10分)先化简,再求值:(﹣2)÷,其中x满足x2﹣x﹣4=023.(12分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角.树杆旁有一座与地面垂直的铁塔,测得米,塔高米.在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、、、在同一条直线上,点、、也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到,参考数据:,,).24.(14分)先化简,再求值:,其中x满足x2-2x-2=0.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

根据同底数幂的乘除法运算进行计算.【详解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.【点睛】本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.2、C【解析】

由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.3、C【解析】连结OA,如图所示:

∵CD⊥AB,

∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故选C.4、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.5、C【解析】

逐一对选项进行分析即可得出答案.【详解】A中,利用三角形外角的性质可知,故该选项错误;B中,不能确定的大小关系,故该选项错误;C中,因为同弧所对的圆周角相等,所以,故该选项正确;D中,两直线不平行,所以,故该选项错误.故选:C.【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.6、C【解析】

解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)÷5=4.8,故选C.【点睛】本题考查众数;算术平均数;中位数.7、A【解析】

对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.8、B【解析】

首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,

∵大圆的一条弦AB与小圆相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的长==4π,

故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.9、D【解析】

根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.10、C【解析】

由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.【详解】∵点C是劣弧AB的中点,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC为直角三角形,只能是∠OPC=90°,则△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5.故选C.【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、①②③【解析】试题分析:根据三角形内角和定理求出∠ABC、∠C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=36°,∴∠EBC=36°,∴∠EBA=∠EBC,∴BE平分∠ABC,①正确;∠BEC=∠EBA+∠A=72°,∴∠BEC=∠C,∴BE=BC,∴AE=BE=BC,②正确;△BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,③正确;∵BE>EC,AE=BE,∴AE>EC,∴点E不是AC的中点,④错误,故答案为①②③.考点:线段垂直平分线的性质;等腰三角形的判定与性质.12、2【解析】分析:设CD=3x,则CE=1x,BE=12﹣1x,依据∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,进而得出CD=2.详解:如图所示,设CD=3x,则CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋转可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案为2.点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.13、1【解析】

根据中位数的定义,结合图表信息解答即可.【详解】将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,则这八位女生的体重的中位数为=1kg,故答案为1.【点睛】本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.14、1.【解析】

根据零指数幂:a0=1(a≠0)可得答案.【详解】原式=1,故答案为:1.【点睛】此题主要考查了零次幂,关键是掌握计算公式.15、【解析】

将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x+x=-=,xx==-1”,将原代数式通分变形后代入数据即可得出结论.【详解】将代入到中得,,整理得,,∴,,∴.【点睛】此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式16、(-2,-2)【解析】

先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.17、-【解析】

由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.【详解】∵方程x2+kx+34∴b2-4ac=k2-4(34k2-3k+92)=-2k2+12k-18=-2(k-3)∴k=3,代入方程得:x2+3x+94=(x+32)解得:x1=x2=-32则x12017x故答案为-23【点睛】此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.三、解答题(共7小题,满分69分)18、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,yp的取值范围是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB为直角,进而得出答案.【详解】(1)MN与AB的关系是:MN⊥AB,MN=AB,如图1,∵△AMB是等腰直角三角形,且N为AB的中点,∴MN⊥AB,MN=AB,故答案为MN⊥AB,MN=AB;(2)∵抛物线y=对应的准蝶形必经过B(m,m),∴m=m2,解得:m=2或m=0(不合题意舍去),当m=2则,2=x2,解得:x=±2,则AB=2+2=4;故答案为2,4;(2)①由已知,抛物线对称轴为:y轴,∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=1.∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴抛物线的解析式是:y=x2﹣2;②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,yp的取值范围是yp<﹣2或yp>2.【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.19、1【解析】

根据实数的混合计算,先把各数化简再进行合并.【详解】原式=1+3-2-3+2=1【点睛】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.20、(1)0.3,45;(2)108°;(3).【解析】

(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)50;(2)①6;②1【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;②当点P与M重合时,△PBC周长的值最小,于是得到结论.试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论