2023-2024学年北京市第十九中高一下数学期末调研模拟试题含解析_第1页
2023-2024学年北京市第十九中高一下数学期末调研模拟试题含解析_第2页
2023-2024学年北京市第十九中高一下数学期末调研模拟试题含解析_第3页
2023-2024学年北京市第十九中高一下数学期末调研模拟试题含解析_第4页
2023-2024学年北京市第十九中高一下数学期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京市第十九中高一下数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把十进制数化为二进制数为A. B.C. D.2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.3.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10104.各项均为实数的等比数列{an}前n项之和记为,若,,则等于A.150 B.-200 C.150或-200 D.-50或4005.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm6.已知分别是的内角的的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形7.设,满足约束条件,则目标函数的最大值是()A.3 B. C.1 D.8.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π9.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.3010.在空间中,可以确定一个平面的条件是()A.一条直线B.不共线的三个点C.任意的三个点D.两条直线二、填空题:本大题共6小题,每小题5分,共30分。11.设,为单位向量,其中,,且在方向上的射影数量为2,则与的夹角是___.12.向量在边长为1的正方形网格中的位置如图所示,则以向量为邻边的平行四边形的面积是_________.13.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.14.若,则________.15.在等差数列中,若,则______.16.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩(满分100分,且抽取的学生成绩都在内),按成绩分为,,,,五组,得到如图所示的频率分布直方图.(1)用分层抽样的方法从月考成绩在内的学生中抽取6人,求分别抽取月考成绩在和内的学生多少人;(2)在(1)的前提下,从这6名学生中随机抽取2名学生进行调查,求月考成绩在内至少有1名学生被抽到的概率.18.在△ABC中,D为BC边上一点,,设,.(1)试、用表示;(2)若,,且与的夹角为60°,求及的值.19.在等差数列中,已知,.(I)求数列的通项公式;(II)求.20.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.21.某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳分别为6个和6个,求两种薄钢板各用多少张,才能使总的面积最小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】选C.2、A【解析】

正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积3、D【解析】

由等差数列{an}中,S1=1,S【详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【点睛】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.4、A【解析】

根据等比数列的前n项和公式化简S10=10,S30=70,分别求得关于q的两个关系式,可求得公比q的10次方的值,再利用前n项和公式计算S40即可.【详解】因为{an}是等比数列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案选A.【点睛】此题考查学生灵活运用等比数列的前n项和的公式化简求值,是一道综合题,有一定的运算技巧,需学生在练习中慢慢培养.5、C【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).6、A【解析】

由已知结合正弦定理可得利用三角形的内角和及诱导公式可得,整理可得从而有结合三角形的性质可求【详解】解:是的一个内角,,由正弦定理可得,又,,即为钝角,故选A.【点睛】本题主要考查了正弦定理,三角形的内角和及诱导公式,两角和的正弦公式,属于基础试题.7、C【解析】

作出不等式组对应的平面区域,结合图形找出最优解,从而求出目标函数的最大值.【详解】作出不等式组对应的平面区域,如阴影部分所示;平移直线,由图像可知当直线经过点时,最大.,解得,即,所以的最大值为1.故答案为选C【点睛】本题给出二元一次不等式组,求目标函数的最大值,着重考查二元一次不等式组表示的平面区域和简单的线性规划,也考查了数形结合的解题思想方法,属于基础题.8、B【解析】

作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.9、C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.10、B【解析】试题分析:根据平面的基本性质及推论,即确定平面的几何条件,即可知道答案.解:对于A.过一条直线可以有无数个平面,故错;对于C.过共线的三个点可以有无数个平面,故错;对于D.过异面的两条直线不能确定平面,故错;由平面的基本性质及推论知B正确.故选B.考点:平面的基本性质及推论.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用在方向上的射影数量为2可得:,即可整理得:,问题得解.【详解】因为在方向上的射影数量为2,所以,整理得:又,为单位向量,所以.设与的夹角,则所以与的夹角是【点睛】本题主要考查了向量射影的概念及方程思想,还考查了平面向量夹角公式应用,考查转化能力及计算能力,属于中档题.12、3【解析】

将向量平移至相同的起点,写出向量对应的坐标,计算向量的夹角,从而求得面积.【详解】根据题意,将两个向量平移至相同的起点,以起点为原点建立坐标系如下所示:则,故.又两向量的夹角为锐角,故,则该平行四边形的面积为.故答案为:3.【点睛】本题考查用向量解决几何问题的能力,涉及向量坐标的求解,夹角的求解,属基础题.13、【解析】

由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.14、【解析】

直接利用倍角公式展开,即可得答案.【详解】由,得,即,.故答案为:.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,属于基础题.15、【解析】

利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.16、【解析】

设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)有4人,有2人;(2)【解析】

(1)由频率分布直方图,求出成绩在和内的频率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出从这6名学生中随机抽取2名学生的所有不同取法,再求出被抽到的学生至少有1名月考成绩在内的不同取法,再求解即可.【详解】解:(1)因为,所以,则月考成绩在内的学生有人;月考成绩在内的学生有人,则成绩在和内的频率的比值为,故用分层抽样的方法从月考成绩在内的学生中抽取4人,从月考成绩在内的学生中抽取2人.(2)由(1)可知,被抽取的6人中有4人的月考成绩在内,分别记为,,,;有2人的月考成绩在内,分别记为,.则从这6名学生中随机抽取2名学生的情况为,,,,,,,,,,,,,,,共15种;被抽到的学生至少有1名月考成绩在内的情况为,,,,,,,,,共9种.故月考成绩内至少有1名学生被抽到的概率为.【点睛】本题考查了分层抽样,重点考查了古典概型概率的求法,属中档题.18、(1)(2),【解析】

(1)用表示,再用,表示即可;(2)由向量数量积运算及模的运算即可得解.【详解】解:(1)因为,所以,又,,所以;(2),,且与的夹角为60°,所以,则,,故.【点睛】本题考查了向量的减法运算,重点考查了向量数量积运算及模的运算,属基础题.19、(Ⅰ)(Ⅱ)【解析】

(I)将已知条件转为关于首项和公差的方程组,解方程组求出,进而可求通项公式;(II)由已知可得构成首项为,公差为的等差数列,利用等差数列前n项和公式计算即可.【详解】(I)因为是等差数列,,所以解得.则,.(II)构成首项为,公差为的等差数列.则【点睛】本题考查等差数列通项公式和前n项和公式的应用,属于基础题.20、(1)见解析;(2);(3)存在,为中点.【解析】

(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,0).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论