辽宁省普兰店市第一中学2024届高一数学第二学期期末综合测试试题含解析_第1页
辽宁省普兰店市第一中学2024届高一数学第二学期期末综合测试试题含解析_第2页
辽宁省普兰店市第一中学2024届高一数学第二学期期末综合测试试题含解析_第3页
辽宁省普兰店市第一中学2024届高一数学第二学期期末综合测试试题含解析_第4页
辽宁省普兰店市第一中学2024届高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省普兰店市第一中学2024届高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.2.在中,角所对的边分别为,若,则此三角形()A.无解 B.有一解 C.有两解 D.解的个数不确定3.已知偶函数在区间上单调递增,且图象经过点和,则当时,函数的值域是()A. B. C. D.4.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是5.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢+矢).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积为()A. B. C. D.6.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,这三天中恰有两天下雨的概率近似为A.0.35 B.0.25 C.0.20 D.0.157.已知角是第三象限的角,则角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角8.设公差不为零的等差数列an的前n项和为Sn.若a2+A.10 B.11 C.12 D.139.角的终边在直线上,则()A. B. C. D.10.已知,则使得都成立的取值范围是().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,是第三象限角,则.12.数列是等比数列,,,则的值是________.13.如图,在中,,,,则________.14.已知函数,为的反函数,则_______(用反三角形式表示).15.已知扇形的半径为6,圆心角为,则扇形的弧长为______.16.设点是角终边上一点,若,则=____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):季度季度编号x销售额y(百万元)(1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;(2)求关于的线性回归方程,并预测该公司的销售额.附:线性回归方程:其中,参考数据:.18.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.19.已知函数().(1)若不等式的解集为,求的取值范围;(2)当时,解不等式;(3)若不等式的解集为,若,求的取值范围.20.如图所示,平面平面,四边形为矩形,,点为的中点.(1)若,求三棱锥的体积;(2)点为上任意一点,在线段上是否存在点,使得?若存在,确定点的位置,并加以证明;若不存在,请说明理由.21.设函数.(1)求函数的单调递增区间;(2)当时,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

A、B={x|x>2或x<-2},

∵集合A={x|x>-2},

∴A∪B={x|x≠-2}≠A,不合题意;

B、B={x|x≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合题意;

C、B={y|y≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合题意;

D、若B={-1,0,1,2,3},

∵集合A={x|x>-2},

∴A∪B={x|x>-2}=A,与题意相符,

故选D.2、C【解析】

利用正弦定理求,与比较的大小,判断B能否取相应的锐角或钝角.【详解】由及正弦定理,得,,B可取锐角;当B为钝角时,,由正弦函数在递减,,可取.故选C.【点睛】本题考查正弦定理,解三角形中何时无解、一解、两解的条件判断,属于中档题.3、A【解析】

由题意结合函数的单调性和函数的奇偶性确定函数的值域即可.【详解】偶函数在区间上单调递增,则函数在上单调递减,且,故函数的值域为.本题选择A选项.【点睛】本题主要考查函数的单调性,函数的奇偶性,函数值域的求解等知识,意在考查学生的转化能力和计算求解能力.4、D【解析】

由折线图逐一判断各选项即可.【详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【点睛】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.5、C【解析】

首先根据图形计算出矢,弦,再带入弧田面积公式即可.【详解】如图所示:因为,,为等边三角形.所以,矢,弦..故选:C【点睛】本题主要考查扇形面积公式,同时考查学生对题意的理解,属于中档题.6、B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为=0.1.故选B7、D【解析】

可采取特殊化的思路求解,也可将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的即为所求区域.【详解】(方法一)取,则,此时角为第二象限的角;取,则,此时角为第四象限的角.(方法二)如图,先将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的区域即为角的终边所在的区域,故角为第二或第四象限的角.故选:D【点睛】本题主要考查了根据所在象限求所在象限的方法,属于中档题.8、C【解析】

由等差数列的前n项和公式Sn=n(a1+an)【详解】∵S13=117,∴13a1+a132=117,∴a1【点睛】本题考查等差数列的性质求和前n项和公式及等差数列下标和的性质,属于基础题。9、C【解析】

先由直线的斜率得出,再利用诱导公式将分式化为弦的一次分式齐次式,并在分子分母中同时除以,利用弦化切的思想求出所求代数式的值.【详解】角的终边在直线上,,则,故选C.【点睛】本题考查诱导公式化简求值,考查弦化切思想的应用,弦化切一般适用于以下两个方面:(1)分式为角弦的次分式齐次式,在分子分母中同时除以,可以弦化切;(2)代数式为角的二次整式,先除以,转化为角弦的二次分式其次式,然后在分子分母中同时除以,可以实现弦化切.10、B【解析】

先解出不等式的解集,得到当时,不等式的解集,最后求出它们的交集即可.【详解】因为,所以,因为,所以,要想使得都成立,所以取值范围是,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了不等式的性质应用,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.12、【解析】

由题得计算得解.【详解】由题得,所以.因为等比数列同号,所以.故答案为:【点睛】本题主要考查等比数列的性质和等比中项的应用,意在考查学生对这些知识的理解掌握水平.13、【解析】

先将转化为和为基底的两组向量,然后通过数量积即可得到答案.【详解】,.【点睛】本题主要考查向量的基本运算,数量积运算,意在考查学生的分析能力和计算能力.14、【解析】

先将转化为,,然后求出即可【详解】因为所以所以所以所以把与互换可得即所以故答案为:【点睛】本题考查的是反函数的求法,较简单15、【解析】

先将角度化为弧度,再根据弧长公式求解.【详解】因为圆心角,所以弧长.故答案为:【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.16、【解析】

根据任意角三角函数的定义,列方程求出m的值.【详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【点睛】本题考查了任意角三角函数的定义与应用问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)关于的线性回归方程为,预测该公司的销售额为百万元.【解析】

(1)列举出所有的基本事件,并确定事件“这个季度的销售额都超过千万元”然后利用古典概型的概率公式可计算出所求事件的概率;(2)计算出和的值,然后将表格中的数据代入最小二乘法公式,计算出和的值,可得出关于的线性回归方程,然后将代入回归直线方程即可得出该公司的销售额的估计值.【详解】(1)从个季度的数据中任选个季度,这个季度的销售额有种情况:、、、、、、、、、设“这个季度的销售额都超过千万元”为事件,事件包含、、,种情况,所以;(2),,,.所以关于的线性回归方程为,令,得(百万元)所以预测该公司的销售额为百万元.【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了利用最小二乘法求回归直线方程,同时也考查了回归直线方程的应用,考查计算能力,属于中等题.18、(1)圆:.(2)证明见解析;,.【解析】

(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【点睛】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.19、(1);(2).;(3).【解析】试题分析:(1)对二项式系数进行讨论,可得求出解集即可;(2)分为,,分别解出3种情形对应的不等式即可;(3)将问题转化为对任意的,不等式恒成立,利用分离参数的思想得恒成立,求出其最大值即可.试题解析:(1)①当即时,,不合题意;②当即时,,即,∴,∴(2)即即①当即时,解集为②当即时,∵,∴解集为③当即时,∵,所以,所以∴解集为(3)不等式的解集为,,即对任意的,不等式恒成立,即恒成立,因为恒成立,所以恒成立,设则,,所以,因为,当且仅当时取等号,所以,当且仅当时取等号,所以当时,,所以点睛:本题主要考查了含有参数的一元二次不等式的解法,考查了分类讨论的思想以及转化与化归的能力,难度一般;对于含有参数的一元二次不等式常见的讨论形式有如下几种情形:1、对二次项系数进行讨论;2、对应方程的根进行讨论;3、对应根的大小进行讨论等;考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用导数知识结合单调性求出或即得解.20、(1);(2)存在,为中点,证明见解析.【解析】

(1)先根据面积垂直的性质得到平面;再由题中数据,结合棱锥体积公式,即可求出结果;(2)先由线面垂直的性质得到为中点时,有.再给出证明:取中点,连接,,,由线面垂直的判定定理,以及面面垂直的性质定理,证明平面,再由线面垂直的性质定理,即可得出结果.【详解】(1)因为四边形为矩形,所以,又平面平面,所以平面;又,所以,因此三棱锥的体积为:;(2)当为中点时,有.证明如下:取中点,连接,,.∵为的中点,为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论