上海市大学市北附属中学2024届高考全国统考预测密卷数学试卷含解析_第1页
上海市大学市北附属中学2024届高考全国统考预测密卷数学试卷含解析_第2页
上海市大学市北附属中学2024届高考全国统考预测密卷数学试卷含解析_第3页
上海市大学市北附属中学2024届高考全国统考预测密卷数学试卷含解析_第4页
上海市大学市北附属中学2024届高考全国统考预测密卷数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市大学市北附属中学2024届高考全国统考预测密卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.2.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A. B.C. D.3.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A. B.C. D.4.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件5.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.6.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.7.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.8.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为,则()A. B. C. D.9.已知,,,则,,的大小关系为()A. B. C. D.10.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是()A.B.C.D.11.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a12.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,若,则数列的前n项和______.14.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.15.的展开式中,的系数为____________.16.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.(Ⅰ)求点的轨迹的方程;(Ⅱ)过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.18.(12分)已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.(1)求抛物线的方程及点的坐标;(2)求的最大值.19.(12分)在中,角,,所对的边分别为,,,且.求的值;设的平分线与边交于点,已知,,求的值.20.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.21.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82822.(10分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.2、A【解析】

根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,,,,,若函数图象的纵坐标不变,横坐标变为原来的倍,则,所以当时,,在有且仅有5个零点,,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.3、D【解析】

先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以,因为的递增区间是:,,由,,得:,,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.4、D【解析】

由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.5、D【解析】

根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.6、C【解析】

由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.7、D【解析】

集合.为自然数集,由此能求出结果.【详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.【点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.8、B【解析】

计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,,则,,由,得,,,,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.9、D【解析】

构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.10、D【解析】

由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D.11、A【解析】

令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,【详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故选A.【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.12、A【解析】

先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,,解得,.因为为偶函数,故直线为其图象的对称轴,令,,故,,因为,故,当时,.故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【详解】由题为等差数列,∴,∴,∴,∴,故答案为【点睛】本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.14、【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.15、16【解析】

要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.16、【解析】

由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得.【详解】如图,连接,,,∵分别为棱的中点,∴,又正方体中,即是平行四边形,∴,∴,(或其补角)就是直线与直线所成角,是等边三角形,∴=60°,其正切值为.故答案为:.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)先画出图形,结合垂直平分线和平行四边形性质可得为一定值,,故可确定点轨迹为椭圆(),进而求解;(Ⅱ)设直线方程为,点坐标分别为,联立直线与椭圆方程得,,分别由点斜式求得直线KA的方程为,令得,同理得,由结合韦达定理即可求解,而,当重合交于点时,可求最值;【详解】(Ⅰ),所以点的轨迹是一个椭圆,且长轴长,半焦距,所以,轨迹的方程为.(Ⅱ)当直线的斜率为0时,与曲线无交点.当直线的斜率不为0时,设过点的直线方程为,点坐标分别为.直线与椭圆方程联立得消去,得.则,.直线KA的方程为.令得.同理可得.所以.所以的中点为.不妨设点在点的上方,则.【点睛】本题考查根据椭圆的定义求椭圆的方程,椭圆中的定点定值问题,属于中档题18、(1),;(2)1.【解析】

(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【详解】(1)∵点F是抛物线y2=2px(p>0)的焦点,P(2,y0)是抛物线上一点,|PF|=3,∴23,解得:p=2,∴抛物线C的方程为y2=4x,∵点P(2,n)(n>0)在抛物线C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴设直线l的方程为:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0设A(x1,y1),B(x2,y2),则y1,y2是y2+4my﹣4=0的两个不同实根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴当m时,取最大值1.【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19、;.【解析】

利用正弦定理化简求值即可;利用两角和差的正弦函数的化简公式,结合正弦定理求出的值.【详解】解:,由正弦定理得:,,,,,又,为三角形内角,故,,则,故,;(2)平分,设,则,,,,则,,又,则在中,由正弦定理:,.【点睛】本题考查正弦定理和两角和差的正弦函数的化简公式,二倍角公式,考查运算能力,属于基础题.20、(Ⅰ);(Ⅱ),证明见解析.【解析】

(Ⅰ)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的方程;(Ⅱ)设点,,点,,易求直线的方程为:,令得,,同理可得,所以,联立直线与椭圆方程,利用韦达定理代入上式,化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论