浙江省台州市温岭市第四中学高一数学文下学期摸底试题含解析_第1页
浙江省台州市温岭市第四中学高一数学文下学期摸底试题含解析_第2页
浙江省台州市温岭市第四中学高一数学文下学期摸底试题含解析_第3页
浙江省台州市温岭市第四中学高一数学文下学期摸底试题含解析_第4页
浙江省台州市温岭市第四中学高一数学文下学期摸底试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省台州市温岭市第四中学高一数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,则等于()A.

B.

C.

D.参考答案:B2.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},A∩(?UB)={9},则A=()A.{1,3}

B.{3,7,9}

C.{3,5,9}

D.{3,9}参考答案:D3.已知则(

)A、

B、

C、

D、参考答案:A4.已知实数x,y满足不等式组若目标函数的最大值为1.则实数a的值是A. B.3

C.

D.1参考答案:D5.某个货场有2005辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装的货物总数为34箱,为满足上述要求,至少应该有货物的箱数是 (

A.17043

B.17044

C.17045

D.17046参考答案:A

提示:设第辆车装货物箱,由题意得:,…实际象以4为周期的数列,答案为6.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在(80,100)之间的学生人数是()A.32

B.27

C.24

D.33

参考答案:D略7.函数y=sinx+cosx,x∈[0,π]的单调增区间是(

)参考答案:A8.函数

(

)A.周期为的奇函数

B.周期为的偶函数C.周期为的奇函数

D.周期为的偶函数参考答案:A9.在下列表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则的值为()1

2

1

A、1

B、2

C、3

D、4参考答案:A10.已知是第三象限的角,若,则等于

A.

B.

C.

D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知角的顶点为坐标原点始边为x轴的正半轴,若P(4,y)是角终边上的一点,且

。参考答案:12.已知,,与的夹角为45°,则使向量与的夹角是锐角的实数的取值范围为__.参考答案:【分析】根据向量数量积的公式以及向量数量积与夹角之间的关系进行求解即可.【详解】∵||,||=1,与的夹角为45°,∴?||||cos45°1,若(2λ)与(3)同向共线时,满足(2λ)=m(3),m>0,则,得λ,若向量(2λ)与(λ3)的夹角是锐角,则(2λ)?(λ3)>0,且,即2λ2+3λ2﹣(6+λ2)?0,即4λ+3λ﹣(6+λ2)>0,即λ2﹣7λ+6<0,得且,故答案为【点睛】本题主要考查平面向量数量积的应用,根据数量积和向量夹角的关系建立不等式关系是解决本题的关键.注意向量同向共线时不满足条件.13.(3分)已知定义在R上的奇函数f(x)在(0,+∞)上是增函数,且f(ax+1)≤f(x﹣2)对任意都成立,则实数a的取值范围是

.参考答案:(﹣∞,﹣5]考点: 奇偶性与单调性的综合.专题: 函数的性质及应用.分析: 根据奇函数在对称区间上单调性相同结合已知可得f(x)在(﹣∞,+∞)上是增函数,进而可将f(ax+1)≤f(x﹣2)对任意都成立,转化为ax+1≤x﹣2对任意都成立,即a≤=1﹣对任意都成立,即a小于等于函数y=1﹣在的最小值,利用单调性法求出函数y=1﹣在的最小值,可得实数a的取值范围解答: 根据奇函数在对称区间上单调性相同且f(x)在(0,+∞)上是增函数,故f(x)在(﹣∞,+∞)上是增函数,若f(ax+1)≤f(x﹣2)对任意都成立,则ax+1≤x﹣2对任意都成立,即a≤=1﹣对任意都成立,由函数y=1﹣在为增函数,故x=时,最最小值﹣5即a≤﹣5故实数a的取值范围是(﹣∞,﹣5]故答案为:(﹣∞,﹣5]点评: 本题考查的知识点是函数的单调性,函数的奇偶性,函数恒成立问题,是函数图象和性质的综合应用,难度中档.14.若方程表示圆心在第四象限的圆,则实数的范围为

.参考答案:.略15.某同学研究相关资料,得到两种求sin18°的方法,两种方法的思路如下:思路一:作顶角A为36°的等腰三角形ABC,底角B的平分线交腰AC于D;思路二:由二倍角公式cos2α=2cos2α﹣1,可知cos2α可表示为cosα的二次多项式,推测cos3α也可以用cosα的三次多项式表示,再结合cos54°=sin36°.请你按某一种思路:计算得sin18°的精确值为.参考答案:【考点】三角函数的化简求值.【专题】转化思想;综合法;三角函数的求值.【分析】设α=18°,则cos3α=sin2α,利用三倍角的余弦公式、二倍角的正弦公式展开化简可得sinα的值.【解答】解:设α=18°,则5α=90°,从而3α=90°﹣2α,于是cos3α=cos(90°﹣2α),即cos3α=sin2α,展开得4cos3α﹣3cosα=2sinαcosα,∵cosα=cos18°≠0,∴4cos2α﹣3=2sinα,化简得4sin2α+2sinα﹣1=0,解得sinα=,或sinα=(舍去),故答案为:.【点评】本题主要考查诱导公式、三倍角的余弦公式、二倍角的正弦公式的应用,属于中档题.16.已知集合A={x|﹣2≤x≤3},B={x|x≥m},若A?B,则实数m的取值范围为.参考答案:(﹣∞,﹣2]【考点】集合的包含关系判断及应用.【专题】计算题;集合.【分析】由集合A={x|﹣2≤x≤3},B={x|x≥m},且A?B,可得m≤﹣2,用区间表示可得m的取值范围.【解答】解:∵集合A={x|﹣2≤x≤3},B={x|x≥m},且A?B,∴m≤﹣2,∴实数m的取值范围是:(﹣∞,﹣2],故答案为:(﹣∞,﹣2].【点评】本题考查的知识点是集合的包含关系判断及应用,其中根据子集的定义,得到m≤﹣2是解答的关键.17.①既是奇函数,又是偶函数;②和为同一函数;③已知为定义在R上的奇函数,且在上单调递增,则在上为增函数;④函数的值域为.其中正确命题的序号是

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知两直线l1:3x+y+1=0,l2:x+y﹣1=0相交于一点P,(1)求交点P的坐标.(2)若直线l过点P且与直线l1垂直,求直线l的方程.参考答案:【考点】直线的一般式方程与直线的垂直关系.【专题】数形结合;转化思想;直线与圆.【分析】(1)联立,解得P即可得出.(2)由直线l与直线l1垂直,可设直线l的方程为:x﹣3y+m=0,把点P代入即可得出.【解答】解:(1)联立,解得P(﹣1,2).(2)∵直线l与直线l1垂直,∴可设直线l的方程为:x﹣3y+m=0,把点P代入可得:﹣1﹣3×2+m=0,解得m=7.∴直线l的方程为:x﹣3y+7=0.【点评】本题考查了直线的交点求法、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于中档题.19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的最下正周期为π,且点P(,2)是该函数图象的一个人最高点.(1)求函数f(x)的解析式;(2)若x∈[﹣,0],求函数y=f(x)的值域;(3)把函数y=f(x)的图线向右平移θ(0<θ<)个单位,得到函数y=g(x)在[0,]上是单调增函数,求θ的取值范围.参考答案:【考点】函数y=Asin(ωx+φ)的图象变换.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.(2)由x的范围可求2x+∈[﹣,],利用正弦函数的性质可求其值域.(3)利用三角函数平移变换规律可求g(x)=2sin(2x﹣2θ+),利用正弦函数的单调性可求函数的单调递增区间,进而可得,k∈Z,结合范围0<θ<,可求θ的取值范围.【解答】解:(1)∵由题意可得,A=2,=π,∴ω=2.∵再根据函数的图象经过点M(,2),可得2sin(2×+φ)=2,结合|φ|<,可得ω=,∴f(x)=2sin(2x+).(2)∵x∈[﹣,0],∴2x+∈[﹣,],∴sin(2x+)∈[﹣1,],可得:f(x)=2sin(2x+)∈[﹣2,1].(3)把函数y=f(x)的图线向右平移θ(0<θ<)个单位,得到函数y=g(x)=2sin[2(x﹣θ)+]=2sin(2x﹣2θ+),∴令2kπ﹣≤2x﹣2θ+≤2kπ+,k∈Z,解得:kπ+θ﹣≤x≤kπ+θ+,k∈Z,可得函数的单调递增区间为:[kπ+θ﹣,kπ+θ+],k∈Z,∵函数y=g(x)在[0,]上是单调增函数,∴,∴解得:,k∈Z,∵0<θ<,∴当k=0时,θ∈[,].20.在△ABC中,A、B、C是三角形的三内角,是三内角对应的三边,已知.(1)求角A的大小;(2)若=,且△ABC的面积为,求的值.参考答案:解:(1)

又为三角形内角,所以

………4分

(2),由面积公式得

,即①

……6分

由余弦定理得

,即②…10分

②变形得,故

……12分

略21.计算:(1)0.027﹣(﹣)﹣2+2.56﹣3﹣1+(﹣1)0(2).参考答案:【考点】对数的运算性质;根式与分数指数幂的互化及其化简运算.【专题】计算题.【分析】(1)化小数为分数,化负指数为正指数,然后利用有理指数幂的运算性质化简求值;(2)直接利用对数的运算性质化简求值.【解答】解:(1)0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论