氢能理事会:全球氢能流动报告2023(英文版)-2024-05-新能源_第1页
氢能理事会:全球氢能流动报告2023(英文版)-2024-05-新能源_第2页
氢能理事会:全球氢能流动报告2023(英文版)-2024-05-新能源_第3页
氢能理事会:全球氢能流动报告2023(英文版)-2024-05-新能源_第4页
氢能理事会:全球氢能流动报告2023(英文版)-2024-05-新能源_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GlobalHydrogen

Flows-2023Update

Considerationsforevolvingglobalhydrogentrade

PublishedinNovember2023bytheHydrogenCouncil.Copiesofthisdocumentareavailableuponrequestorcanbedownloadedfromourwebsite:

ThisreportwasauthoredbytheHydrogenCouncilincollaborationwithMcKinsey&Company.

Thereproductionofthiswork,savewhereotherwisestated,isauthorised,providedthesourceis

acknowledged.Allrightsareotherwisereserved.Theauthorsofthereportconfirmthefollowing:

1.Therearenorecommendations,measures,ortrajectorieswithinthereportthatcouldbeinterpretedas

standardsorasanyotherformof(suggested)coordinationbetweentheparticipantsofthestudyreferredtowithinthereportthatwouldinfringetheEUcompetitionlaw.

2.Itisnottheirintentionthatanysuchformofcoordinationwillbeadopted.

Whilethecontentsofthisreportanditsabstractimplicationsfortheindustrycanbediscussedgenerallyoncetheyhavebeenprepared,individualstrategiesremainproprietaryandconfidentialandarethe

responsibilityofeachparticipant.Participantsareremindedthat,aspartoftheinvariablepracticeofthe

HydrogenCouncilandtheEUcompetitionlawobligationstowhichmembershipactivitiesaresubject,suchstrategicandconfidentialinformationmustnotbesharedorcoordinated—includingaspartofthisreport.

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

2

Introduction

Hydrogenanditsderivativeswillplayacentralroleindecarbonizationandglobaltradewillbecriticalfordrivinguptake.Thiswasthekeyfindingof

GlobalHydrogenFlows

,ajointreportoftheHydrogenCouncilandMcKinsey&Companypublishedin2022.Ithighlightedtheinabilityofmajorfuturehydrogendemandregions,includingEurope,Japan,andSouthKorea,tomeetalltheirdemandataffordablecosts.Other

regions,thereportshowed,couldpotentiallyhaveexcesslow-costsupply.

Yettheoutlookforhydrogenisfarfromfixed.Thehydrogenindustryisconstantlyadaptingtoarapidly

evolvingregulatoryframework,shiftsinglobalpolicy,geopoliticalforces,newtechnologies,andongoinglearningfromprojectimplementation.This2023summaryreportrevisitsthefindingsofthe2022Global

HydrogenFlowsreporttoaccountfortheseandotherchanges—andassesseshowglobalhydrogentradeflowscouldevolve.1

Abouttheanalysis

Theresultspresentedinthis2023summaryreportarebasedonamoredetaileddocument,showingtheoutputsfromanadvancedanalyticsoptimizationmodel.Thissoftwarebalancessupplyanddemand

acrossallregions,multiplecarriers,andendproducts.

TheGlobalHydrogenTradeFlowsModeloptimizesacross1.5milliontraderoutesandmultipledemandscenarios

Inputs

optimizationofproductionandtradeflows

utputs

Demandforecasts

Diversiiationandsecurity

ofsupplyconstraints

productioncosts

productionlimits

Transportcosts

98

pipelinedirecions

62

marketregions

9

largestcountrieswitha

subcountrysplit

8

productionsourcecategories

5

endproducts

4

fuloptimizatonyears:

2025,2030,2040,2050

4

hydrogencarriersand

acarrierforgreensteeI

capexforecasts

countryproducttion

forecasts

Destinationcostcurves

Flowvolumesbycarrier

Marginacostforecast

scenarioanalysis

source:Hydrogencouncil,MckinseyGlobalHydrogenFlowModel

1Unlessotherwisestated,alldataandanalysisinthissummaryreportarebasedondataprovidedbytheGlobalHydrogenFlows2023datasetoftheHydrogenCouncilandMcKinsey&Company,drawingondataprovidedbyMcKinsey&Company.

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

3

Keymessagesfromthisupdate

Despitetheexistingpositiveandgrowing

momentumonhydrogenuptake(refertoHydrogen

Insights2023),itisalsobecomingclearthatthe

currentgrowthrateisnotstrongenoughcomparedtowhatisrequiredforthenet-zerotrajectory,at

leastnotby2030.Acknowledgingthecriticalrole

hydrogenhastoplayfortheworldtodecarbonizeby2050,thereisaneedandurgencytostepupeffortsthataddresschallengesandunlockinvestments.

Estimatesofthelevelizedcostofhydrogen

(LCOH)forrenewablehydrogenarebetween30and65percenthigherthanthoseintheOctober2022report.Therevisedestimatesreflect

higherelectrolyzercapitalexpenditureaswellasrenewablecostsandfactorinelementsthatmayinfluenceindividualcountries’investmentattractiveness.

The2023analysisconsidersdemandandtrade

inascenariocalledFurtherAcceleration(FA),

onewheretheenergytransitionisaccelerated

comparedtotoday’spacebuttheworldstillfailstoreachbelowthe1.5°Ctemperaturetarget.Under

thisscenario,demandforcleanhydrogen(both

low-carbonandrenewable)couldreachover40

milliontonsperannum(MTPA)by2030.Tofeedthisdemand,nearly20MTPAcouldbetransportedlongdistancesmostlyviapipelinesorshipmentsofcleanammoniaasafuel,hydrogencarrier,andreplacinggreyammonia.By2050,cleanhydrogendemand

growsto375MTPAandaround200MTPAcouldbetransportedlongdistances.Bythen,pipelinescouldaccountforaround40percentoflong-distance

transportation,synthetickeroseneandammonia

another20percenteach,shippedhydrogen(either

viaammonia,LOHC,orLH2)10percent,withmethanolandgreensteelaccountingfor5

percenteach.

30to

65%

Increaseinrenewable

hydrogenLCOH

comparedto2022report

20MT

Hydrogentransportedover

longdistancesby2030

outof40MTinFurther

Accelerationscenario

200MT

Hydrogentransported

overlongdistancesby

2050outof375MTin

FurtherAcceleration

scenario

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

4

$

$

By2030,evolvingproductioncostprofilestogetherwiththeintroductionofproductionincentivesin

somemarketscouldresultinaglobalcostcurve

witha15xcostdifferentialbetweenthelowestand

highestcostregions.Withcostsreachingbelow$1/kgduetosupplyincentivessuchastheInflation

ReductionActandover$5/kgattheupperend.Thiscouldleadtotradearbitrageopportunities.By2050,theglobalcostcurveisexpectedtoflattentoa2.5xcostdifferentialasincentivesexpireandrenewablecostsreducewiththemostcompetitiveregions

ataround$1.5/kgandhigh-costregionssittingataround$3.5/kg.

Tradereducesthecostofcarbonabatement,whencomparedtoascenariowhereglobaltradeis

limited.Indeed,theneedtoproducehighercost

hydrogen(withtradebeinglimited)wouldresultin

totalinvestmentrequirementsof$12trillion,by2050.Bycontrast,inascenarioinwhichinternational

hydrogentradecandevelop,totalhydrogen-relatedinvestmentswouldamounttoapproximately$8

trillionby2050,representinga$4trillioncost

savings.Tofacilitatelong-distancetransportation

ofhydrogenandderivatives,around$70billion

investmentswouldberequiredperyearintransport,conversion,andreconversion.

15X

Costdifferencein2030

betweenhighestand

lowestcostproduction

regions

$8TN

Totalhydrogenrelated

investmentsrequired

by2050

$70BN

Annualinvestments

requiredperyearby2050

intraderelatedinvestments

50%

Reductionintotal

hydrogeninvestments

unlockedthroughtrade

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

5

Howthelandscapehaschanged

Thepast12monthshaveseensomemajorchangesinexpecteddemand,productionconditions,andregulations.

Hydrogendemandgrowthprojectionsremainrobustbuttemperedbyslowerdecarbonizationexpectations

Thereferencecaseofthe2022GlobalHydrogenFlowsreportwascalled“EfficientDecarbonization”

andreflectedtheHydrogenCouncil’snet-zeroscenario.Thissetoutthefullpotentialforhydrogento

decarbonizeenergysystemswithfewlonger-termconstraintsontrade,ensuringthatthe2050climate

changerequirementscouldbemetinaneconomicallyefficientway.Demandinthisscenarioreached

70MTPAofcleanhydrogenby2030outofatotalof140MTPA,and660MTPAofcleanhydrogenby

2050.Thereportalsopresentedthreebespokealternativescenarios,includingonewithalowerdemandcasecalledDelayedTransitionwheredemandreached100MTPAby2030(40MTPAofwhichwascleanhydrogen)and400MTPAby2050.

Sincethereportwasreleased,ithasbecomeclearerstillthattheworldisnotonanet-zerotrajectory,atleastnotby2030.Forinstance,inJune2023,aspartofMcKinsey’sGlobalEnergyPerspective,152

internationalenergyexpertsandexecutiveswereaskedwhatdecarbonizationtrajectorytheybelievedtheworldison.Thiswasthencomparedtoarangeof2023McKinseyenergytransitionscenarios.ThemajoritypickedatrajectorythatrepresentsascenarioknownasFurtherAcceleration(FA).Thisisonewheretheenergytransitionisacceleratedbutfinancialandtechnologicalconstraintsremainsothat

globalnetzeroisnotreachedby2050,resultingina1.9°Cglobaltemperatureincrease.Toaccountfortheconsensusviewonclimatechangetrajectory,theGlobalHydrogenTradeFlowresultsinthissummaryreporthavebeenupdatedusingtheFAscenario.

Thenet-zerodemandscenarioremainstheHydrogenCouncil’sreferencescenarioasitunderscores

thecriticalrolethathydrogenhastoplayfortheworldtodecarbonizeby2050.However,thedampenedoutlookreflectsarealitythatcannotbeignored—despitepositivetrends,bothproducersandwould-beusersofhydrogencontinuetofacechallenges,fromincreasingcoststotechnologicaluncertaintiesto

alackofcoherentandstableregulation,includingaglobalpriceoncarbon,thatimpactthepaceandbuildoutofthehydrogeneconomy.Thisservesasastarkreminderthat,forhydrogentoachieveitsfullpotential,thereisaneedtostepupeffortsthataddresschallengesandunlockinvestments.

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

6

7

Renewablehydrogenwillplayanimportantrole,despiteahighercostoutlook

The2023analysisincludesadetailedbottom-upassessmentofthedevelopmentcostsoflarge-scale

renewablehydrogenprojectsundergoingfront-endengineeringdesign(FEED)studies.2Thisapproachconsidersnotjustequipmentcostsbutalsoincludesathoroughreviewofthebalanceofplant(BoP),aswellasengineering,procurement,andconstruction(EPC)costs.TheassessmentfoundthattheLCOHforrenewablehydrogenisbetween30and65percenthigherin2023whencomparedtoestimates

from2022.TheincreaseinLCOHisdrivenbyhighercapex,financing,andrenewablescosts,aswell

asthebroaderinclusionofadditionalcostssuchasEPC.AlargeportionofthecostincreaseisfromthehigherBoPandotherdevelopercosts,asfoundbyMcKinseyCapitalAnalyticsandMcKinseyHydrogenInsightswhenassessingelectrolysisconstructionprojects.Tosoftentheimpactofhigherplantcapex,

theelectrolyzersizecanbedecreasedorloadfactorincreasedbyswappinglower-costsolarwithlow-loadfactors,withsetupsthatyieldhigherloadfactorssuchaswindandhydropower.

Despitethehighercostoutlook,theanalysispointstorenewablehydrogenlargelymaintainingitsmarketsharecomparedtolow-carbonhydrogenfromgas—forreasonspotentiallyrangingfromafocuson

productsderivedfromrenewablestonewincentivesanddirectsupport.By2050,outof375MTPAof

totalcleanhydrogendemand,theforecastis265MTPArenewableand110MTPAlowcarbonreflectinga70:30split.(Seesidebar,“Renewablehydrogenmaintainsitsmarketshare”).

Costandtechnologyuncertaintiespersistinlow-carbonhydrogenproduction

Naturalgaspriceshaveseensustainedvolatilitysincetheinitialreportwasreleasedin2022.Atthe

timeofwriting,naturalgasfuturesinAsiaandEuroperemainelevatedandhavebeenusedtoguidetheupdatedviewto2030asgasproducersmayfavorexpandingexportsofnaturalgas.Beyond2030,thenaturalgaspriceoutlookisbasedonthesupply-demandbalanceexpectationsandisdifferentiatedbyregion.UndertheFAscenario,gasdemandandglobalgaspricesdeclineovertime,makinglow-carbonhydrogenproductionmorecompetitive.Atthesametime,thetrajectoryofthenaturalgasdemand

declineisslowerthanunderthenet-zeroscenario,increasingthepriceofbothnaturalgasandlow-

carbonhydrogen($0.10to0.20perkg)relativetothenet-zeroscenarioprojections.3Capexhasalso

risenforlow-carbonhydrogen,butthishasafarmorelimitedimpactonthecostofproduction,given

thatcostsaremostlyoperatingexpenditure(opex)driven.Higherelectrolyzercapexfavorslow-carbon

hydrogenproductionand—assumingCCScanbescaledupfastenough—low-carbonhydrogencouldaccountfor45percentofhydrogenproductioncomparedtothebasecaseof25to30percentandreachupto65percentoflong-distancetradedvolumes.

2Renewablehydrogenisproducedbyelectrolysisofwaterusingrenewableenergy,whilelow-carbonhydrogenishydrogenproduced

fromnaturalgasinafacilitythatusescarboncaptureandstorage(CCS)tosequestergreenhousegasemissionsarisingfromproduction;

McKinseyCapitalAnalyticsandMcKinseyHydrogenInsights.

3Globalenergyperspective2023,McKinsey,October2023.

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

Policiesandproductionincentivescouldreducecosts,potentiallyboostingproductionandexports

PoliciessuchastheInflationReductionAct(IRA)intheUnitedStatesandtheCleanHydrogen

InvestmentTaxCredit(ITC)inCanadahavebeenfactoredintotheanalysis.4FortheUnitedStates,the

newestimatesincorporateaproductiontaxcredit(PTC)of$3perkgforrenewablehydrogenoverthe

firsttenyearsofaproject’sduration,withadditionalcreditsavailableonrenewableelectricitygeneration.Forlow-carbonhydrogen,producerscanselecteitheraPTCofupto$3.00perkgoverthefirsttenyearsor$85pertCO2forCCSinthefirst12years.5ForCanada,theupdateincludesanITCof40percentof

therenewablehydrogenplantcapexand30percentoftherenewablecapex,aswellas40percentofthelow-carbonhydrogenplantcapex.Incombination,thesemeasuresimpactpositionsonthecostcurveofhydrogenuntilthe2030s.

DemandmandatesforrenewablehydrogenfromtheRenewableEnergyDirective(REDIII)havebeenincorporatedintothemodelingforEurope.6Thisincludesthemandatefor42percentofhydrogen

productsconsumedbyindustry(excludingrefining)toberenewableby2030withthetargetincreasingto60percentby2035.

Renewablehydrogenmaintainsitsmarketshare

EstimatesofLCOHhavebeenrevisedinour2023update,ascomparedtothe2022report.However,theupdateindicatesthatrenewablehydrogenlargelymaintainsitsmarketsharecomparedtolow-carbon

hydrogenfromgas.Thiscanbeexplainedbymultiplefactors,including:

•Thedrivetoincreasetheuseofproductsderivedfromrenewables.Someregions,suchasEurope,haveregulationsinplacethatrequirerenewablehydrogenanditsderivativestomeetaportionofdemand.1

•Newincentivesanddirectsupport.Newincentivesforrenewablehydrogenareemerging,boostingshort-termeconomics.2

•CCSprogress.ThelatestpipelineofCCSprojectshasbeenusedtoguidetheleveloflow-carbonhydrogenproductionto2030withscaleupfactorsappliedbeyondthis.

•Highergasprices.IntheFurtherAccelerationscenariothatwasexploredinMcKinsey’s

GlobalEnergy

Perspective

,theenergytransitionisacceleratedbutnotenoughtomeetglobalnetzeroin2050.Highergaspricescouldcausesomereductioninthecompetitivenessofgas-based,low-carbonhydrogen,

withexistingexportersmonetizinggasforlongerviapipelinesandliquifiednaturalgas(LNG)exports.

1Globalhydrogenflows,McKinseyandtheHydrogenCouncil,October5,2022;

“RenewableEnergy:Counciladoptsnewrules,”Councilofthe

EU,October9,2023.

2“TheInflationReductionAct:Here’swhat’sinit,”McKinsey,October24,2022;“Consultationonthecleanhydrogeninvestmenttaxcredit,”GovernmentofCanada,June2,2023.

4“TheInflationReductionAct:Here’swhat’sinit,”McKinsey,October24,2022;“Consultationonthecleanhydrogeninvestmenttaxcredit,”GovernmentofCanada,June2,2023.

5“H.R.5376–InflationReductionActof2022,”C.

6“RenewableEnergyDirective,”EuropeanCommission,March30,2023.

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

8

Threekeyfactorscoulddeterminethe

competitivenessofhydrogenproduction

Hydrogencanbeproducedalmostanywhere,butcompetitivenessvariesacrossregionsandmarkets—evenbeforeincentivesareconsidered.Commercialsupplypotential,andconsequentlytradepotential,canbeinfluencedbythreemainfactors.

ThefirstfactoristheLCOH.Forrenewablehydrogen,LCOHisprimarilydeterminedbylocalrenewablecosts,thesizeoftherenewablepotential(forexample,notallofthebestlocationswillbeavailable)andelectrolyzerutilization,whileforlow-carbonhydrogenitisdeterminedbythelocalcostsandavailabilityofmethaneandCCS,aswellasemissionspricing.The2022findingshavebeenupdatedtoreflect

thelatestdatarelatingtotheseparameters,andnowalsoconsidertheimpactonLCOHfromNorth

Americanincentivesthatarecurrentlyinplace.Thehigherelectrolyzercostsnowconsideredhavetwoimpactsonthecostcurve.Firstly,makinglow-carbonhydrogenproductionsourcesrelativelymore

competitive.Secondly,itincreasestheattractivenessofwindierlocationsforrenewablehydrogenprojectsasinturnthisleadstohigherelectrolyzerutilization.

ThesecondfactoristhepaceofCCSdeployment,whichdeterminestheabilitytoacceleratelow-carbonhydrogenproduction.Thelow-carbonhydrogenprojectpipelineto2030includedintheanalysisreflectsthecurrentpaceofCCSdeployment.CCScouldbeconsideredamoreimportantfactorindeterminingthecommercialpotentialoflow-carbonhydrogenthangasprices.

Thethirdfactorspanselementsthatmayinfluencearegion’sinvestmentattractiveness.Theseincludemarketefficiency,industrialcapability,workforceavailability,andlocalpublicacceptanceofbuildingnewinfrastructure.Toreflectthesefactors,theupdatedanalysisconsidersregionalpremiumswhich

influencetheweightedaveragecostofcapitalbybetween5and14percent.Ifthesepremiumsarenotincluded,projectionsofrenewablehydrogenproductionwouldbedrivensolelybyrenewableenergysystem(RES)quality.

Thepotentialnetimpactoftheseandotherfactorsoncleanhydrogenproductioncostsisdemonstratedonthe2030supplycostcurve(Exhibit1).

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

9

Exhibit1

50percentofglobalH2productionisunder$2.5/kgH2

GlobalcleanH₂productioncostcurve,¹FurtherAccelerationscenario,2030

0

1

2

3

4

01234567

US

US

Canada

MiddleEast

Norway

Chile

Spain

Australia

Mauritania

WestChina

Brazil

India

Morocco

Namibia

Germany

~15×

EastChina

ratiobetween

lowest-

andhighest-

ArgentinaFrance

costregions

(including

incentives)

Italy

Japan

01

40milliontonsperannumcleanH₂demand,$

234567

Unitproductioncost,$/kgH₂

IncentivesRenewableH₂Low-carbonH₂

1Countriesarerepresentativeofproducersratherthenexhaustive.

Source:HydrogenCouncil,McKinseyGlobalHydrogenFlowModel

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company10

Long-distancetransportationof

hydrogenandderivativeswouldreduceoverallinvestmentrequirements

Thegeographiclocationofthemaindemandcentresforcleanhydrogendoesnotalwayscoincidewiththelocationsthatprovidetheconditionstoproducecleanhydrogeninfavorableconditions.Thisopenspotentialtradeopportunitiesbetweencountriesthathave(potential)excesscleanhydrogenproductioncapacityatattractivecost,andcountriesneedingtoimporthydrogen.

Futuretradeandtransportationinhydrogenanditsderivativeswillbedeterminedbyahostoffactorsincludingproductioncosts,thetypesofproductsbeingtransported,andotherprocessinputs.

Somehigh-demandareas—suchasJapan,SouthKorea,andpartsofEurope—willlikelyhavelimitedexcesspoweravailableforhydrogenproductionduetotherequirementforbroaderdecarbonizationofthepowersystem.Meanwhile,otherregionswilllikelyhaveexcessproductionpotentialabovelocaldemand,suchasSouthAmericaandtheMiddleEast.

By2050,severalcountriescouldbeproducinghydrogenatcloseto$1.50perkg,withthelowest

endoftheproductioncostspotentiallybeingcloseto$1.20perkg.Ontheotherendofthespectrum,

countrieswithlimitedlow-costcleanenergypotentialwouldseedomesticallyproducedhydrogenbeingsignificantlymoreexpensive,typicallyabove$3.50perkg.

Wheresupplysourcesareavailablelocally,thislocalproductionwouldinmanycasesbemorecost-

effectivethansupplyfromdistantproductionlocations,evenifthesearelowercost.Thisisbecause

long-distancehydrogentransportrequiresconversiontoanintermediaryatthepointofproductionandthenreconversionatthepointofuse,increasingcostsduetohydrogenlossesandrequirementsfor

otherinputssuchaselectricity.Long-distancetransportofhydrogenviaintermediarieswillthuslikelyonlyoccurwhenthereisnootheroption,forexample,wheredemandcenterssimplydonothavetheresourcestoproducehydrogenthemselves.

Transportationcostsofderivativessuchasammoniaandsynthetickeroseneare,however,smallrelativetotheoverallcostoftheproducts,duetohighervolumetricdensities.Therelativelylowtransportcostscouldpotentiallymakelong-distancetradeinderivativesfromlower-costcenterscompetitivewithlocalsuppliesinhigh-costmarkets.

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company11

AccessibilitytohighvolumesofcleanCO2,eitherfrombiogenicsourcesorviadirectaircapture,couldsignificantlyimprovethecompetitivenessofsyntheticfuels(synfuels)andmethanolproductioninsomelocationsandhencetheabilitytotradeintheseproducts.Brazil,Canada,China,Indonesia,andthe

UnitedStatesrepresentmorethan60percentoftheglobalcleanCO2available.Thisisexpectedto

remainthecaseuntilthe2040swhenthecostofdirectaircapturereducestocompetewithbiogenicsources.7AccesstoDR-gradeironoreisanotherdeterminingfactorthatwilllikelydrivehydrogen

productionforlow-carbonandgreensteelinareassuchasBrazilandSweden.Evenincountrieswithnoironoreresources,alowerLCOHcouldalsodriveironoreimportsandhotbriquettediron(HBI)

productionfordomesticandexportuse.

Totalhydrogen-relatedinvestmentsundertheFAscenariocouldamounttoapproximately$8trillion

by2050.Tofacilitatelong-distancetransportationofhydrogenandderivativesunderthisscenario,

annualinvestmentofaround$70billionintransport,conversion,andreconversioninfrastructure

wouldpotentiallyberequiredeachyearby2050.Thiswouldcoverthecostofbuildingandoperatingconversionandreconversioninfrastructure,morethan500shipsandcarriers,aswellasthepipelinesneededtotransportover200MTPAofhydrogenandhydrogenderivativesoverlongdistances.Theseinvestmentscouldsavesome$4trillionintotalinvestmentcostswhencomparedtoascenariowhereglobaltradeislimited.Thisisthankstotheabilitytoproducehydrogenandderivativesinlowercost

regionsandtransportittohigh-costproductionregions.Notethatevengreateroverallsavingscanbe

achievedifinvestmentswouldbeconsistentwiththenet-zeroscenario.Underanet-zeroscenariotraderelatedinvestmentswouldbedouble:$140billionby2050,tocoverthecostofmorethan1,100ships

andcarrierstotransporthydrogenderivativesandpipelinestomoveover200MTPAofhydrogenandthiswouldsaveover$6trillionininvestmentcostsacrossthevaluechain.

7McKinseyanalysisdrawingoninputsprovidedbyMcKinsey’sEnergySolutionsteam.

GlobalHydrogenFlows-2023Update

HydrogenCouncil,McKinsey&Company

12

Thecontinuedevolutionofglobal

traderoutes

Differentregionsarelikelytodrivehydrogenandderivativestradeatdifferentpointsintime.CanadaandtheUnitedStatesareexpectedtoinitiallybothbenethydrogenexporters,duetoarampupofproductionsupportedbytheIRAintheUnitedStatesa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论