版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题46解不等式(组)特训50道1.(1)解不等式:;(2)解不等式组:【答案】(1);(2)【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1),去括号得,,移项得,,合并同类项得,,化系数为1得,;(2),解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】本题考查了解一元一次不等式(组),正确的计算是解题的关键.2.解下列不等式(组):(1)(2)【答案】(1)(2)【分析】(1)移项合并同类项,即可求解;(2)分别求出两个不等式的解集,即可求解.【详解】(1)解:移项合并同类项得:,解得:;(2)解:解不等式①,得
,
解不等式②,得,∴原不等式组的解集为.【点睛】本题主要考查了解一元一次不等式组和解一元一次不等式,熟练掌握一元一次不等式组和一元一次不等式的解法是解题的关键.3.解不等式:(1)解不等式:;(2)解不等式组:.【答案】(1)(2)【分析】(1)根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1,即可获得答案;(2)分别求解两个不等式,然后按照“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则确定该不等式的解集即可.【详解】(1)解:,去分母,得,去括号,得,移项、合并同类项,得,系数化为1,得;(2)解:,解不等式①,得,解不等式②,得,故该不等式的解集为.【点睛】本题主要考查了解一元一次不等式及解不等式组,熟练掌握解一元一次不等式和不等式组的方法和步骤是解题关键.4.解下列不等式和不等式组:(1);(2).【答案】(1)(2)【分析】(1)按照解一元一次不等式步骤即可解得x的范围,再把解集表示在数轴上即可;(2)解出每个不等式,再求公共解集即可.【详解】(1)解:去括号得:,移项,合并同类项得:,把未知数系数化为1得:;(2)解:由①可得:,由②可得:,∴原不等式组的解集为【点睛】本题考查解一元一次不等式和一元一次不等式组,解题的关键是掌握解一元一次不等式的步骤.5.解不等式(组):(1)(2)【答案】(1)(2)【分析】(1)根据解不等式的步骤:去括号,移项,合并同类项,系数化为1进行计算;(2)分别解出不等式的解集,然后找出公共部分.【详解】(1)解:,去括号,得,移项,得,合并同类项,得,系数化1,得,即该不等式的解集为;(2)解:,解不等式得:,解不等式得:,所以原不等式组的解集为:.【点睛】本题考查解一元一次不等式(组),正确求出每一个不等式解集是基础,“熟知同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.6.解下列不等式(组):(1);(2).【答案】(1)(2)【分析】(1)先移项,再合并同类项,最后将未知数系数化为1即可;(2)先求出两个不等式的解集,然后再求出不等式组的解集即可.【详解】(1)解:,移项得:,合并同类项得:,未知数系数化为1得:.(2)解:,解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】本题主要考查了解不等式或不等式组,解题的关键是熟练掌握解不等式的一般步骤,准确计算,注意不等式两边同除以一个相同的负数,不等号方向改变.7.解不等式(组):(1)(2)【答案】(1)(2)【分析】(1)先去分母,然后移项合并同类项,系数化为1即可;(2)分别求出每个不等式的解集,然后即可确定不等式组的解集.【详解】(1)解:去分母得:,移项得:,系数化为1得:;(2),解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】题目主要考查求不等式及不等式组的解集,熟练掌握解不等式的方法是解题关键.8.解不等式(组):(1);(2).【答案】(1)(2)【分析】(1)根据解不等式的解法步骤求解即可;(2)先解得每个不等式的解集,再求得两个解集的公共部分即可得到不等式组的解集.【详解】(1)解:去括号,得移项、合并同类项,得化系数为1,得,∴不等式的解解集为;(2)解:解①得:解②得:∴不等式组得解集为.【点睛】本题考查解一元一次不等式(组),解答的关键是熟记一元一次不等式组的解集口诀:同大取大,同小取小,大小小大取中间,大大小小无处找.9.解不等式(组)(1).(2).【答案】(1)(2)【分析】(1)先去括号,再移项合并同类项,即可求解;(2)分别求出两个不等式的解集,即可求解.【详解】(1)解:,去括号得:,移项合并同类项得,解得:;(2)解:,解不等式①,得:,解不等式②,得:,所以原不等式组的解集是.【点睛】本题主要考查了解一元一次不等式和一元一次不等式组,熟练掌握一元一次不等式和一元一次不等式组的解法和步骤是解题的关键.10.解不等式组.(1).(2).【答案】(1)(2)【分析】(1)根据解一元一次不等式基本步骤求解即可;(2)分别求出每一个不等式的解集,然后根据口诀同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:移项得:,合并同类项得:,即;(2)解:,解不等式①得:,解不等式②得:,∴不等式组的解集为.【点睛】本题考查的是解一元一次不等式及解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.解下列不等式(组):(1);(2).【答案】(1);(2).【分析】(1)按照移项、合并同类项的步骤求解即可;(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】(1)解:,移项得,解得;(2)解:,解不等式①,得,解不等式②,得,所以.【点睛】本题考查了一元一次不等式及一元一次不等式组的解法,解题关键是熟练掌握不等式和不等式组的解题步骤,同时理解不等式组解集“同大取大、同小取小,大小小大中间找,大大小小找不到”的原则.12.解下列不等式或不等式组.(1);(2).【答案】(1)(2)无解.【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集;(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】(1),,,,;(2),由①得,由②得,∴不等式组无解.【点睛】本题考查了一元一次不等式的解法,以及一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.13.解下列不等式组:(1)(2)【答案】(1)(2)【分析】(1)先去括号,然后移项合并同类项,再将系数化为1即可;(2)先分别求出两个不等式的解集,然后再求出不等式组的解集即可.【详解】(1)解:,去括号得:,移项合并同类项得:,将未知数系数化为1得:.(2)解:解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】本题主要考查了解不等式或不等式组,解题的关键是熟练求出不等式的解集,注意不等式两边同乘以或除以同一个负数,不等号方向发生改变.14.解下列不等式(组):(1);(2)【答案】(1)(2)【分析】(1)先去括号,然后移项合并同类项,最后将未知数系数化为1即可;(2)先求出两个不等式的解集,然后再求出不等式组的解集即可.【详解】(1)解:,去括号得:,移项合并同类项得:,未知数系数化为1得:;(2)解:解不等式①得:解不等式②得:,∴不等式组的解集为:.【点睛】本题主要考查了解不等式或不等式组,解题的关键是熟练掌握解不等式的一般步骤,准确计算,注意不等式两边同乘以或除以同一个负数,不等号方向发生改变.15.解下列不等式(组)(1)(2)【答案】(1)(2)【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:去括号,得:,移项,得:,合并同类项,得:,系数化为,得:;(2)解不等式①,得:,解不等式②,得:,∴不等式组的解是.【点睛】本题考查解一元一次不等式和不等式组.正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.解下列不等式(组),并把解在数轴上表示出来.(1);(2).【答案】(1),数轴见解析(2).数轴见解析【分析】(1)去分母,移项合并,将x系数化为1,即可求出解集,表示在数轴上即可;(2)分别求出不等式组中两不等式的解集,表示在数轴上,找出解集的公共部分即可得到不等式组的解集.【详解】(1)解:去分母得:,移项合并得:,表示在数轴上,如图所示:;(2)解:,由解得:;由解得:,表示在数轴上,如图所示:则不等式组的解集为.【点睛】本题考查解不等式和不等式组.正确解不等式是解题的关键.17.解不等式(组):(1)(2)【答案】(1)(2)【分析】(1)去分母、移项、合并同类项、系数化成1即可求解;(2)分别求出各不等式的解集,两个不等式的解集的公共部分就是不等式组的解集.【详解】(1)解:;(2)解:解不等式①得,解得,解不等式②得,解得,故不等式组的解集为:.【点睛】本题考查解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.18.解下列不等式(组),并把解表示在数轴上.(1).(2).【答案】(1);解集表示在数轴上见解析(2);解集表示在数轴上见解析【分析】(1)先移项合并同类项,然后再将未知数系数化为1即可;(2)先分别求出每一个不等式的解集,再根据数轴确定不等式组的解集即可.【详解】(1)解:,移项合并同类项得:,不等式两边同除以得:,把不等式的解集表示在数轴上,如图所示:(2)解:,解不等式①得:,解不等式②得:,把不等式组的解集表示在数轴上,如图所示:∴不等式组的解集为:.【点睛】本题主要考查了解不等式或不等式组,解题的关键是熟练掌握解一元一次不等式的一般步骤,准确计算,注意不等式两边同乘以或除以同一个负数不等号方向改变.19.解下列不等式(组).(1).(2)【答案】(1)(2)【分析】(1)先去括号,移项,合并,系数化时根据不等式的性质:不等式的两边都乘以(除以)同一个负数,不等号的方向变化,即可得出结果.(2)先解出不等式,再解出不等式,最后在数轴上找出两个不等式的公共部分,得到解集.【详解】(1)解:(1)去括号得:移项得:合并得:系数化为得:故答案为:(2)解:解不等式①得:解不等式②得:∴不等式组的解集为:【点睛】本题考查了一元一次不等式和一元一次不等式组的解法等知识点,熟记不等式的性质是解题的关键.20.解答题.(1)解不等式:.(2)解不等式组:.【答案】(1);(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,得:;(2)解:,解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.解不等式(组):(1);(2).【答案】(1)(2)【分析】(1)不等式去分母,移项,合并同类项,把x系数化为1,即可求出解集;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】(1)解:去分母得:,移项得:,合并同类项得:,解得:;(2)解:,由①得:,由②得:,则不等式组的解集为.【点睛】此题考查了一元一次不等式组的解法,其中一元一次不等式的解法步骤为:去分母,去括号,移项,合并同类项,将x系数化为1,不等式组取解集的方法为:同大取大;同小取小;大小小大去中间;大大小小无解.22.解不等式(组):(1);(2).【答案】(1)(2)【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:移项,得:,合并同类项,得:;(2)解不等式,得:,解不等式,得:;则不等式组的解集为.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.解二元一次不等式(组):(1).(2).【答案】(1)x<(2)【分析】(1)根据不等式的性质先去括号,再移项合并同类项,再将系数化1即可(2)先将①移项,系数化1即可,再将②先去分母,再移项再合并同类项,最后系数化1,再根据“大小小大中间找”口诀即可求解.【详解】(1)去括号得,移项得,,合并同类项得,,系数化为1得;(2)由①移项得,合并同类项得,系数化为1得,由②去分母得,去括号得移项得,合并同类项得系数化为1得.故不等式组得解集为:.【点睛】本题考查了一元一次不等式及一元一次不等式组的解法,正确求出每个不等式解集是解题关键.24.解下列一元一次不等式(组)(1)(2)【答案】(1)(2)【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:∴(2)解:解不等式①得:解不等式②得:∴不等式组的解集为:【点睛】本题考查了解一元一次不等式(组),掌握解一元一次不等式的步骤是解题的关键.25.解下列不等式(组).(1)(2)【答案】(1)(2)【分析】(1)先去分母,再去括号、移项,合并同类项,系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集.【详解】(1)解:去分母得,,去括号得,,移项合并同类项得,,系数化为1得,;(2)解:,解①得,,解②得,,∴不等式组的解集为.【点睛】本题考查的是解一元一次不等式及解一元一次不等式组,熟知不等式的基本性质是解答此题的关键.26.解不等式或不等式组:(1)(2)【答案】(1)(2)【分析】(1)解不等式步骤:去分母,去括号,移项,合并同类项,系数化为1;(2)分别求不等式得解集,取各解集公共部分即可.【详解】(1)解:,,,,,;(2),解不等式①得:,解不等式②得:x,不等式组的解集为:.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解题的关键.27.解下列不等式(组)(1)(2)【答案】(1);(2).【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:去分母得:,去括号得:移项得:,合并得:,解得:;(2)解:,解不等式①得:,解不等式②得:,所以不等式组的解集是.【点睛】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.28.解下列不等式(组),并把解集在数轴上表示出来.(1);(2).【答案】(1),数轴见解析(2),数轴见解析【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式;(2)分别求出每一个不等式的解集,然后把解集表示在数轴上,根据数轴即可确定不等式的解集.【详解】(1)解:去分母:,去括号得:,解得在数轴上表示,如图,(2)解:解不等式①得:解不等式②得:在数轴上表示,如图,∴不等式组的解集为:【点睛】本题考查了解一元一次不等式(组),并把解集在数轴上表示出来,数形结合是解题的关键.29.解下列不等式(组).(1);(2).【答案】(1)(2)【分析】(1)先去括号,然后移项、合并同类项,系数化为1即可得出结果;(2)先求出各个不等式的解集,然后再由“同大取大,同小取小,小大大小中间找,大大小小无处找”确定不等式组的解集即可.【详解】(1)解:去括号得:,移项得:,合并同类项得:;(2)解不等式①得:,解不等式②得:,∴不等式组的解集为.【点睛】本题主要考查求不等式及不等式组的解集,熟练掌握求不等式解集的方法是解题关键.30.解不等式(组),并把解集表示在数轴上:(1);(2).【答案】(1);见解析(2)﹣2<x≤1,见解析【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:,去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1可,得;将解集表示在数轴上如下:(2)由①,得,由②,得,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.31.解下列不等式(组)(1)≤﹣1(2)【答案】(1)x≥1(2)﹣3≤x<2【分析】(1)先去分母,再去括号、移项,合并同类项,系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集.【详解】(1)解:去分母得,2(2x+1)﹣3(5x﹣1)≤﹣6,去括号得,4x+2﹣15x+3≤﹣6,移项合并同类项得,﹣11x≤﹣11,系数化为1得,x≥1;(2),解①得,x≥﹣3,解②得,x<2,∴不等式组的解集为﹣3≤x<2.【点睛】本题考查的是解一元一次不等式及解一元一次不等式组,熟知不等式的基本性质是解答此题的关键.32.解下列不等式(组):(1);(2).【答案】(1)(2)【分析】(1)根据解不等式的一般方法步骤求解即可;(2)先求出两个不等式的解集,然后即可确定不等式组的解集.【详解】(1)解:,去分母得:,移项合并同类项得:;(2)解:解不等式①得:x>1,解不等式②得:,∴不等式组的解集为:.【点睛】题目主要考查求不等式及不等式组的解集,熟练掌握运算法则是解题关键.33.解不等式(组),并将解集在数轴上表示出来:(1)2x-1≤;(2)【答案】(1)x≤1,解集在数轴上表示见解析(2)无解.解集在数轴上表示见解析【分析】(1)根据解一元一次不等式的基本步骤依次去分母、去括号、移项、合并同类项、系数化为1即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:去分母,得:2(2x-1)≤3x-1,去括号,得:4x-2≤3x-1,移项,得:4x-3x≤-1+2,合并同类项,得:x≤1,将不等式的解集表示在数轴上如下:;(2)解:,由①,得x≤1,由②,得x≥2,故原不等式组无解,在数轴上表示如下图所示,.【点睛】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解下列不等式(组),并把第(2)题的解集表示在数轴上.(1)3x﹣1≥2x+4(2)【答案】(1)x≥5(2)﹣3≤x,数轴表示见解析【分析】(1)首先移项,再合并同类项即可;(2)分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,最后把解集在数轴上表示出来即可.【详解】(1)解:3x﹣1≥2x+4,移项得:3x﹣2x≥4+1,合并同类项得:x≥5;(2)解:,解不等式①得,解不等式②得x≥﹣3,∴原不等式组的解集为﹣3≤x,在数轴上表示解集如图:.【点睛】此题主要考查了解一元一次不等式(组),以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.35.解下列不等式(组)(1)5x﹣6≤2(x+3)(2).【答案】(1)x≤4(2)【分析】(1)根据去括号、移项、合并同类项、系数化为1的步骤求解即可;(2)分别求出不等式组中两个不等式的解集,然后根据确定不等式组解集的方法得出答案.【详解】(1)解:去括号,得5x﹣6≤2x+6,移项合并,得3x≤12,系数化为1,得x≤4;(2)解:,解不等式①得,x≥,解不等式②得,x>,故不等式组的解集为x>.【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,熟练掌握解一元一次不等式的一般步骤是解题的关键.36.解不等式(组):(1);(2).【答案】(1)(2)【分析】(1)利用去括号,移项,合并同类项,系数化成1,求解即可;(2)先求出每个不等式的解集,再求出不等式组的解集.【详解】(1)解:去括号,得,移项,得,合并同类项,得,系数化成1,得;(2)解:,解不等式,可得:,解不等式,可得:,∴原不等式组的解集为:.【点睛】本题考查了解一元一次不等式(组)的应用,熟练掌握解不等式(组)的方法是解本题的关键.37.解下列不等式(组),并将其解集在数轴上表示出来.(1)(2)【答案】(1)x≤-2,数轴见解析(2)-5<x-2,数轴见解析【分析】(1)按照移项,合并同类项,化系数为1的步骤解一元一次不等式,并在数轴上表示出不等式的解集即可求解;(2)分别求出每一个不等式的解集,在数轴上表示出不等式的解集,进而判断出解集.【详解】(1)移项,得4x-6x≥3+1合并同类项,得-2x≥4系数化为1,得x≤-2其解集在数轴上表示为:(2)解:解不等式①得:x>-5解不等式②得:x<-2不等式①②的解集在数轴上表示为:因此,不等式组的解集为:-5<x<-2【点睛】本题考查了解一元一次不等式(组),在数轴上表示不等式的解集,正确的计算是解题的关键.38.解下列不等式(组)(1).(2).【答案】(1)(2)【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:,,解得:;(2)解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】本题考查了解一元一次不等式(组),正确的计算是解题的关键.39.解不等式(组):(1)(2)【答案】(1)(2)【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤求解即可;(2)先求出不等式组中每个不等式的解集,再根据确定不等式组解集的方法得出不等式组的解集.【详解】(1)解:去括号得:,移项得:,合并同类项得:,系数化为1得:;(2)解:,解不等式①得:,解不等式②得:,故不等式组的解集为:.【点睛】本题考查了解一元一次不等式及解一元一次不等式组,熟练掌握不等式的基本性质是正确求解的关键.40.解下列不等式(组),并把解集在数轴上表示出来:(1);(2).【答案】(1),数轴见解析(2),数轴见解析【分析】(1)通过移项、合并同类项、系数化为1,即可得出不等式的解,然后在数轴上表示出不等式的解即可;(2)首先分别求出不等式的解,即可得出不等式组的解集,然后在数轴上表示出不等式组的解集即可.【详解】(1)解:,移项,得:,合并同类项,得:,系数化为1,得:,这个不等式的解集在数轴上的表示如图所示,(2)解:,解不等式,得:,解不等式,得:,故不等式组的解集为:,这个不等式组的解集在数轴上的表示如图所示,【点睛】本题考查了解不等式(组),解本题的关键在熟练掌握不等式(组)的解法.用数轴表示解集时,“”用空心圆,“”用实心点.41.(1)解不等式:(2)解不等式组:【答案】(1)(2)【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)去分母得,,移项得:,合并得:,系数化为1,得.(2)解不等式①得:,解不等式②得:,∴原不等式组的解集为:.【点睛】本题考查的是解一元一次不等式(组),正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.42.解不等式(组):(1);(2)【答案】(1)x<1(2)-2<x<【分析】(1)先去括号,注意符号的变化,后按照解不等式的步骤求解即可.(2)先准确求得每个不等式的解集,后确定不等式组的解集.【详解】(1),∴4x-8+7<3,∴4x<4,∴x<1.(2)解不等式①,得x>-2;解不等式②,得x<;故不等式组的解集是-2<x<.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,正确求得每个不等式的解集是解题的关键.43.解不等式(组)(1)
(2)【答案】(1);(2)不等式组的解集为.【分析】(1)先去分母,再去括号,移项合并,系数化1即可;(2)分别解每个不等式,再取它们的公共解集即可.【详解】解:(1),去分母得,去括号得,移项合并得,解得;(2),解不等式①得,解不等式②得,∴不等式组的解集为.【点睛】本题考查不等式的解法,不等式组的解法,掌握不等式的解法与步骤,不等式组的解法,特别是不等式组的解集取法,同大取大,同小取小,大小小大取中间,大大小小无解是解题关键.44.解下列不等式或不等式组:(1);(2).【答案】(1);(2).【分析】(1)先去分母,再去括号,然后移项合并同类项,系数化为1,即可求解;(2)分别求出两个不等式的解集,即可求解.【详解】(1)解:去分母得:,去括号得:,移项得:,合并同类项得:,∴不等式的解集为;(2)解:,∵解不等式①得:,解不等式②得:,∴不等式组的解集为.【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,熟练掌握解一元一次不等式和解一元一次不等式组的基本步骤是解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025编辑部工作计划
- 六年级语文教学计划进度
- 小班学期工作计划范文汇编
- 2025年小班保育员工作计划 幼儿园小班保育员计划
- 幼儿园2025年度小班安全计划
- 2025-2025政教处学期工作计划
- 行政助理下半年工作计划
- 个人提升计划范文
- 《基礎攝影》课件
- 2025年临夏货运从业资格考试题
- 西安交通大学《临床流行病学》2023-2024学年第一学期期末试卷
- 2024年中考语文试题分类汇编:基础知识综合(教师版)
- 广告色彩与视觉传达考核试卷
- 2024-2025学年人教版高一上册物理必修一知识清单
- GB/T 36547-2024电化学储能电站接入电网技术规定
- 品牌合作经营合同
- 期末测试卷(一)2024-2025学年 人教版PEP英语五年级上册(含答案含听力原文无听力音频)
- 2024文旅景区新春潮趣游园会龙腾中国年主题集五福活动策划方案
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 中医跨文化传播智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 剪刀式升降车专项施工方案
评论
0/150
提交评论