广东省惠州市三栋中学高二数学文期末试卷含解析_第1页
广东省惠州市三栋中学高二数学文期末试卷含解析_第2页
广东省惠州市三栋中学高二数学文期末试卷含解析_第3页
广东省惠州市三栋中学高二数学文期末试卷含解析_第4页
广东省惠州市三栋中学高二数学文期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省惠州市三栋中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是(

)A.

B.

C.

D.参考答案:A略2.若i为虚数单位,复数与的虚部相等,则实数m的值是A.-1 B.2 C.1 D.-2参考答案:D【分析】先化简与,再根据它们虚部相等求出m的值.【详解】由题得,因为复数与的虚部相等,所以.故选:D【点睛】本题主要考查复数的运算和复数相等的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.3.我国古代数学名著《九章算术》中有如下问题:“今有北乡8758人,西乡有7236人,南乡有8356人,现要按人数多少从三个乡共征集487人,问从各乡征集多少人”.在上述问题中,需从南乡征集的人数大约是(

)A.112 B.128 C.145 D.167参考答案:D【分析】由题意利用分层抽样的方法结合抽样比即可确定需从南乡征集的人数.【详解】由题意结合分层抽样的方法可知,需从南乡征集的人数为:.故选:D.【点睛】本题主要考查分层抽样的方法及其应用,属于基础题.4.已知A(1,2,-1),B(5,6,7),则直线AB与xOz平面交点的坐标是()A.(0,1,1)

B.(0,1,-3)

C.(-1,0,3)

D.(-1,0,-5)参考答案:D设直线AB与平面交点为,则,又与共线,所以,则,解得,选D.

5.已知函数,把函数的图象向右平移个单位,再把图象的横坐标缩小到原来的一半,得到函数的图象,当时,方程有两个不同的实根,则实数m的取值范围为(

)A. B. C.[-2,-1] D.(-2,-1]参考答案:D【分析】将整理为,根据图象平移和伸缩变换可得,将问题转化为的图象和直线有两个不同的交点,根据单调性可得时的图象特点,结合函数单调性可求得所求范围.【详解】由题意得:向右平移个单位,可得:再把图象的横坐标缩小到原来的一半,得到:当时,

有两个不同的实根,即的图象和直线有两个不同的交点在上单调递增,在上单调递减且,

本题正确选项:【点睛】本题考查根据方程根的个数求解参数范围问题,关键是能够将问题转化为曲线与直线的交点个数问题,利用数形结合来进行求解;其中涉及到三角函数图象的平移和伸缩变换、正弦型函数的值域和单调性的求解问题.6.已知椭圆的离心率为,则b等于(

).A.3

B.

C.

D.参考答案:B因为,所以,即该椭圆的焦点在轴上,又该椭圆的离心率为,则,解得;故选B.

7.一条光线沿直线入射到直线后反射,则反射光线所在的直线方程为(

)A.

B.

C.

D.

参考答案:B略8.下列各对函数中,相同的是()

A.

B.

C.

D.参考答案:D略9.某四棱锥的三视图如图所示,该四棱锥的侧面积为()A.8 B.16 C.10 D.6参考答案:B【考点】由三视图求面积、体积.【分析】根据三视图可得四棱锥为正四棱锥,判断底面边长与高的数据,求出四棱锥的斜高,代入棱锥的侧面积公式计算.【解答】解:由三视图知:此四棱锥为正四棱锥,底面边长为4,高为2,则四棱锥的斜高为=2,∴四棱锥的侧面积为S==16.故选B.10.设x∈R,则“1<x<3”是“|x﹣2|<1”的()A.充分不必要条件 B.必要不充分条件C.充要条件

D.既不充分也不必要条件参考答案:C【考点】必要条件、充分条件与充要条件的判断.【专题】不等式的解法及应用;简易逻辑.【分析】由|x﹣2|<1,解得1<x<3.即可判断出结论.【解答】解:由|x﹣2|<1,解得1<x<3.∴“1<x<3”是“|x﹣2|<1”的充要条件.故选:C.【点评】本题考查了不等式的解法、简易逻辑,考查了推理能力与计算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若实数x,y满足不等式组,则的最小值是__________.参考答案:1【分析】根据约束条件画出可行域,将问题转化为求解在轴截距的最小值;根据图象可知当过时,截距最小,代入求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:将变为:则求的最小值即为求在轴截距的最小值由图象平移可知,当直线过点时,截距最小则:本题正确结果:1【点睛】本题考查线性规划求解最值的问题,关键是将问题转化为在轴截距最小的问题,属于基础题.12.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是

.参考答案:(﹣7,3)【考点】3F:函数单调性的性质;74:一元二次不等式的解法.【分析】由偶函数性质得:f(|x+2|)=f(x+2),则f(x+2)<5可变为f(|x+2|)<5,代入已知表达式可表示出不等式,先解出|x+2|的范围,再求x范围即可.【解答】解:因为f(x)为偶函数,所以f(|x+2|)=f(x+2),则f(x+2)<5可化为f(|x+2|)<5,即|x+2|2﹣4|x+2|<5,(|x+2|+1)(|x+2|﹣5)<0,所以|x+2|<5,解得﹣7<x<3,所以不等式f(x+2)<5的解集是(﹣7,3).故答案为:(﹣7,3).13.曲线与直线,及轴所围成图形的面积为

.参考答案:2略14.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上纹起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,……,则按照以上规律,若具有“穿墙术”,则n=

.参考答案:9999,,,,按照以上规律,可得.

15.有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有_____种.参考答案:192试题分析:不妨令乙丙在甲左侧,先排乙丙两人,有种站法,再取一人站左侧有种站法,余下三人站右侧,有种站法考虑到乙丙在右侧的站法,故总的站法总数是.故答案为.考点:排列、组合的实际应用.【方法点晴】本题考查排列、组合的实际应用,解题的关键是理解题中所研究的事件,并正确确定安排的先后顺序,此类排列问题一般是谁最特殊先安排谁,俗称特殊元素优先法.由于甲必须站中央,故先安排甲,两边一边三人,不妨令乙丙在甲左边,求出此种情况下的站法,再乘以2即可得到所有的站法总数,计数时要先安排乙丙两人,再安排甲左边的第三人,最后余下三人,在甲右侧是一个全排列.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),对确定的常数m,若满足|PB|+|PD1|=m的点P的个数为n,则n的最大值是

.参考答案:12【考点】棱柱的结构特征.【分析】P应是椭圆与正方体与棱的交点,满足条件的点应该在棱B1C1,C1D1,CC1,AA1,AB,AD上各有一点满足条件,由此能求出结果.【解答】解:∵正方体的棱长为1,∴BD1=,∵点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=m,∴点P是以2c=为焦距,以2a=m为长半轴的椭圆,∵P在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在正方体的12条棱上各有一点满足条件.∴满足|PB|+|PD1|=m的点P的个数n的最大值是12,故答案为12.【点评】本题以正方体为载体,主要考查了椭圆定义的灵活应用,属于综合性试题,解题时要注意空间思维能力的培养.17.如图是甲、乙两班同学身高(单位:cm)数据的茎叶图,若从乙班身高不低于170cm的同学中随机抽取两名,则身高为173cm的同学被抽中的概率为

甲班

乙班 2

18

1

991017

03689

883216

258

8

15

9参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知△的内角所对的边分别为且.(1)若,求的值;(2)若△的面积求的值.参考答案:略19.设命题:对任意实数x。,不等式恒成立;命题q:方程表示焦点在轴上的双曲线.(I)若命题为真命题,求实数的取值范围;(II)若命题“p∨q。”为真命题,且“”为假命题,求实数m的取值范围.参考答案:解:(1)方程表示焦点在轴上的双曲线即命题为真命题时实数的取值范围是m>5

………5分(2)若命题真,即对任意实数m,不等式恒成立。得,∴m<-1

…………………6分∨为真命题,∧为假命题,即P真Q假,或P假Q真,如果P真Q假,则有

………9分如果P假Q真,则有

……12分所以实数m的取值范围为或m>5…….13分20.在1,2,3,…,9这9个自然数中,任取3个不同的数.(1)求这3个数中恰有2个是奇数的概率;(2)设X为所取3个数中奇数的个数,求随机变量X的概率分布及数学期望.参考答案:解:(1)记“3个数中恰有2个是奇数”为事件A,从9个自然数中,任取3个不同的数,共会出现=84种等可能的结果,其中3个数中恰有2个是奇数的结果有=40种,故这3个数中恰有2个是奇数的概率P(A)=.(2)由题意得X的取值范围为0,1,2,3,P(X=0)=,P(X=1)==,P(X=2)=,P(X=3)=,∴随机变量X的分布列为:X 0 1 2 3P EX==.略21.(本小题满分12分)某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为p,不堵车的概率为1—p。若甲、乙两辆汽车走公路①,丙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论