河南省周口市郸城第二中学高三数学理模拟试卷含解析_第1页
河南省周口市郸城第二中学高三数学理模拟试卷含解析_第2页
河南省周口市郸城第二中学高三数学理模拟试卷含解析_第3页
河南省周口市郸城第二中学高三数学理模拟试卷含解析_第4页
河南省周口市郸城第二中学高三数学理模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省周口市郸城第二中学高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题“对任意都有”的否定是(

)A.对任意,都有 B.不存在,使得C.存在,使得 D.存在,使得参考答案:D略2.函数在点处的切线斜率为,则的最小值是(

)A.10

B.

9

C.

8

D.

参考答案:B略3.设直线与圆相切,则(A).

(B).

(C).

(D).参考答案:A略4.直线被圆截得的弦长为(

)A

B

C

D

参考答案:B略5.下列四个命题:

其中的真命题是(

)A.

B.

C.

D.参考答案:错误,正确,错误,正确,∴答案D6.设向量a,b,c满足=

=1,=,=,则的最大值等于

(A)2

(B)

(c)

(D)1

参考答案:A本题主要考查了向量的夹角问题。是难度较大的题目。

,所以A、B、C、D四点共圆,分析可知当线段AC为直径时,最大,最大值为2.7.复数z=cos+isin在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:B【考点】A4:复数的代数表示法及其几何意义.【分析】利用三角函数求值、几何意义即可得出.【解答】解:由题意可知,z=cos+isin=+i,对应的点在第二象限.故选:B.8.若展开式的常数项为60,则a的值为(

).A.4

B.±4

C.2

D.±2参考答案:D因为展开式的通项为,令,则,所以常数项为,即,所以.故选D

9.已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则?的取值范围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]参考答案:C【考点】简单线性规划的应用;平面向量数量积的运算.【专题】数形结合.【分析】先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入?分析比较后,即可得到?的取值范围.【解答】解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,?=﹣1×1+1×1=0当x=1,y=2时,?=﹣1×1+1×2=1当x=0,y=2时,?=﹣1×0+1×2=2故?和取值范围为[0,2]

解法二:z=?=﹣x+y,即y=x+z当经过P点(0,2)时在y轴上的截距最大,从而z最大,为2.当经过S点(1,1)时在y轴上的截距最小,从而z最小,为0.故?和取值范围为[0,2]故选:C【点评】本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.10.设全集,集合,,则(

)A.

B.

C.

D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.函数在同一平面直角坐标系内的大致图象为(

参考答案:C略12.(坐标系与参数方程选做题)已知两曲线参数方程分别为和,它们的交点坐标为___________.参考答案:13.函数为偶函数,则实数

.参考答案:14.定义某种新运算:的运算原理如右边流程图所示,则54-34=

.参考答案:915.已知双曲线的左右焦点分别为,,为双曲线右支上的任意一点,若的最小值为,则双曲线离心率的取值范围是▲。参考答案:【知识点】双曲线的性质

基本不等式

H6

E6因为为双曲线右支上的任意一点,所以,所以,当且仅当,可得解得,又因为双曲线离心率大于1,故答案为.【思路点拨】因为为双曲线右支上的任意一点,所以,所以,解得,再利用之间的关系即可求得双曲线的离心率的取值范围.16.设集合,若,则实数m的取值范围是________.参考答案:17.在等差数列{an}中,a1=﹣2015,其前n项和为Sn,若﹣=2,则S2015的值等于:

.参考答案:﹣2015【考点】等差数列的前n项和.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】由已知推导出{}是以﹣2015为首项,以1为公差的等差数列.由此能求出S2015.【解答】解:设等差数列前n项和为Sn=An2+Bn,则=An+B,∴{}成等差数列.∵=﹣2015,∴{}是以﹣2015为首项,以1为公差的等差数列.∴=﹣1,∴S2015=﹣2015.故答案为:﹣2015.【点评】本题考查数列的前2015项和的求法,是基础题,解题时要认真审题,注意构造法的合理运用.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上。(1)求椭圆E的方程;(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围。(3)过M()的直线:与过N()的直线:的交点P()在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求的值。参考答案:解:(1)因为椭圆E:(a>b>0)过M(2,),2b=4故可求得b=2,a=2

椭圆E的方程为

-------------3分

(2)设P(x,y),A(x1,y1),B(x2,y2),当直线L斜率存在时设方程为,解方程组得,即,则△=,即(),要使,需使,即,所以,

①将它代入()式可得P到L的距离为又将及韦达定理代入可得1

当时由

故2

当时,3

当AB的斜率不存在时,,综上S--------------8分(3)点P()在直线:和:上,,故点M()N()在直线上故直线MN的方程,上设G,H分别是直线MN与椭圆准线,的交点由和得G(-4,)由和得H(4,)故=-16+又P()在椭圆E:有故=-16+=-8------------------13分

略19.(12分)已知椭圆的离心率为,且短轴长为,是椭圆的左右两个焦点,若直线过,且倾斜角为,交椭圆于两点.(1)求椭圆的标准方程.(2)求的周长与面积.参考答案:【知识点】椭圆及其几何性质H5【答案解析】(1)

(2)8;(1)∵离心率为,且短轴长为2,∴解得:c2=,a2=6,b2=3,

∴椭圆C的标准方程为=1;

(2)设△ABF1的周长为l,

则l=|AB|+||BF1|+|AF1|=|AF2|+|BF2|+|BF1|+|AF1|=4a=8,F2(1,0),

又∵倾斜角为45°,∴l的方程为:x-y-1=0,

∴,消x得7y2+6y-9=0,∴y1+y2=-,y1?y2=-,

∴|y1-y2|==,

∴设△ABF1的面积为S,∴S=×2c×|y1-y2|=.

∴△ABF1的周长与面积分别为8;【思路点拨】(1)设出椭圆C的标准方程,由短轴长与离心率,结合a2=b2+c2,求出b、a,即得标准方程;

(2)求出直线AB的方程,与椭圆的方程组成方程组,利用韦达定理得y1+y2=-,y1?y2=-,计算出|y1-y2|,求出面积.20.(本题满分12分)已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).(Ⅰ)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.参考答案:(I)解:当a=1,b=2时,由f’(x)=(x-1)(3x-5),得f’(2)=1;又∵f(2)=0

∴f(x)在点(2,0)处的切线方程为y=x-2(Ⅱ)证明:因为f′(x)=3(x-a)(x-),

由于a<b.

故a<.

所以f(x)的两个极值点为x=a,x=.

不妨设x1=a,x2=,

因为x3≠x1,x3≠x2,且x3是f(x)的零点,

故x3=b.

又因为-a=2(b-),

x4=(a+)=,所以a,,,b依次成等差数列,所以存在实数x4满足题意,且x4=.略21.不等式选讲设函数(Ⅰ)当时,求函数的定义域;(Ⅱ)若函数的定义域为,求实数的取值范围.参考答案:(Ⅰ)当时,依题意得:(法一)由绝对值的几何意义知不等式的解集为。(法二)不等式可化为或或,∴不等式的解集为。………………4分(Ⅱ)依题意得:关于的不等式在上恒成立,…………5分即在上恒成立,

………………6分

………………7分

略22.在直角坐标系xoy中,直线l过点M(3,4),其倾斜角为45°,以原点为极点,以x正半轴为极轴建立极坐标,并使得它与直角坐标系xoy有相同的长度单位,圆C的极坐标方程为ρ=4sinθ.(Ⅰ)求直线l的参数方程和圆C的普通方程;(Ⅱ)设圆C与直线l交于点A、B,求|MA|?|MB|的值.参考答案:【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)直线l过点M(3,4),其倾斜角为45°,参数方程为,(t为参数).由极坐标与直角坐标互化公式代入化简即可得出圆C的普通方程;(Ⅱ)直线l的参数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论