版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省古县等三县八校高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.2.已知集合,,则()A. B.C.或 D.3.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③4.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.5.记单调递增的等比数列的前项和为,若,,则()A. B. C. D.6.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.27.记的最大值和最小值分别为和.若平面向量、、,满足,则()A. B.C. D.8.双曲线的渐近线方程是()A. B. C. D.9.已知函数在上有两个零点,则的取值范围是()A. B. C. D.10.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.11.若的二项式展开式中二项式系数的和为32,则正整数的值为()A.7 B.6 C.5 D.412.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则_________.14.若满足约束条件,则的最小值是_________,最大值是_________.15.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________.16.(5分)已知函数,则不等式的解集为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)18.(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.(Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;(Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1);(Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的分布列及数学期望(分布列写出计算表达式即可).注:若,则,,.19.(12分)己知,,.(1)求证:;(2)若,求证:.20.(12分)如图,在三棱柱中,、、分别是、、的中点.(1)证明:平面;(2)若底面是正三角形,,在底面的投影为,求到平面的距离.21.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.22.(10分)已知点是抛物线的顶点,,是上的两个动点,且.(1)判断点是否在直线上?说明理由;(2)设点是△的外接圆的圆心,点到轴的距离为,点,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.2、D【解析】
首先求出集合,再根据补集的定义计算可得;【详解】解:∵,解得∴,∴.故选:D【点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.3、D【解析】
对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.4、D【解析】
根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.5、C【解析】
先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项.【详解】因为为等比数列,所以,故即,由可得或,因为为递增数列,故符合.此时,所以或(舍,因为为递增数列).故,.故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.6、B【解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.7、A【解析】
设为、的夹角,根据题意求得,然后建立平面直角坐标系,设,,,根据平面向量数量积的坐标运算得出点的轨迹方程,将和转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得,则,,,建立平面直角坐标系,设,,,由,可得,即,化简得点的轨迹方程为,则,则转化为圆上的点与点的距离,,,,转化为圆上的点与点的距离,,.故选:A.【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.8、C【解析】
根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.9、C【解析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.10、D【解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.11、C【解析】
由二项式系数性质,的展开式中所有二项式系数和为计算.【详解】的二项展开式中二项式系数和为,.故选:C.【点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键.12、B【解析】
根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意可得,又由于为的中点,且点在轴上,所以可得点的横坐标,代入抛物线方程中可求点的纵坐标,从而可求出点的坐标,再利用两点间的距离公式可求得结果.【详解】解:因为是抛物线的焦点,所以,设点的坐标为,因为为的中点,而点的横坐标为0,所以,所以,解得,所以点的坐标为所以,故答案为:【点睛】此题考查抛物线的性质,中点坐标公式,属于基础题.14、06【解析】
作不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.【详解】作出可行域,如图中的阴影部分:求的最值,即求直线在轴上的截距最小和最大时,当直线过点时,轴上截距最大,即z取最小值,.当直线过点时,轴上截距最小,即z取最大值,.故答案为:0;6.【点睛】本题主要考查了线性规划中的最值问题,利用数形结合是解决问题的基本方法,属于中档题.15、等腰三角形【解析】∵∴根据正弦定理可得,即∴∴∴的形状为等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案为等腰三角形,16、【解析】
易知函数的定义域为,且,则是上的偶函数.由于在上单调递增,而在上也单调递增,由复合函数的单调性知在上单调递增,又在上单调递增,故知在上单调递增.令,知,则不等式可化为,即,可得,又,是偶函数,可得,由在上单调递增,可得,则,解得,故不等式的解集为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.4;(2);(3)应选择方案,理由见解析【解析】
(1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案的概率;(3)设骑手每日完成外卖业务量为件,分别表示出方案的日工资和方案的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择.【详解】(1)设事件为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为,∵,∴估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案”,设事件,为“甲、乙、丙、丁四名骑手中恰有人选择方案”,则,所以四名骑手中至少有两名骑手选择方案的概率为.(3)设骑手每日完成外卖业务量为件,方案的日工资,方案的日工资,所以随机变量的分布列为1601802002202402602800.050.050.20.30.20.150.05;同理,随机变量的分布列为1501802302803300.30.30.20.150.05.∵,∴建议骑手应选择方案.【点睛】本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.18、(Ⅰ);(Ⅱ),;(Ⅲ)详见解析.【解析】
(Ⅰ)由题知这只蜻蜓是种还是种的可能性是相等的,所以,代入数值运算即可;(Ⅱ)可判断均值应为,再结合(1)和题干备注信息可得,进而求解;(Ⅲ)求得,该分布符合二项分布,故,列出分布列,计算出对应概率,结合即可求解;【详解】(Ⅰ)记这只蜻蜓的翼长为.因为种蜻蜓和种蜻蜓的个体数量大致相等,所以这只蜻蜓是种还是种的可能性是相等的.所以.(Ⅱ)由于两种蜻蜓的个体数量相等,的方差也相等,根据正态曲线的对称性,可知由(Ⅰ)可知,得.(Ⅲ)设蜻蜓的翼长为,则.由题有,所以.因此的分布列为.【点睛】本题考查正态分布基本量的求解,二项分布求解离散型随机变量分布列和期望,属于中档题19、(1)证明见解析(2)证明见解析【解析】
(1)采用分析法论证,要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,,当且仅当时等号成立.将上面四式相加,可得,即.【点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题..20、(1)证明见解析;(2).【解析】
(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影为,平面,平面,,为正三角形,且为的中点,,,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.21、(Ⅰ)见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装配式厢房合同范例
- 2024年度9A文离婚协议范本编写与培训2篇
- 餐厅转租合同模板版
- 高端化妆品代理合同范例
- 新款合同范例
- 2024年度世联地产代理销售业务合作协议2篇
- 2024年木作工程承包协议样本一
- 2024年服装鞋帽买卖合同
- 2024年个人贷款咨询合同3篇
- 室外排水合同模板
- 音乐著作权授权合同模板
- 《铁路轨道维护》课件-钢轨钻孔作业
- 【MOOC】数据结构与算法-北京大学 中国大学慕课MOOC答案
- 二零二四年光伏电站建设与运营管理合同2篇
- 2024版:离婚法律诉讼文书范例3篇
- 一专科一特色护理汇报
- 部编版九年级历史下册第15课-第二次世界大战-练习题(含答案)
- 家庭教育工作评估实施细则
- 2024年国考申论真题(行政执法卷)及参考答案
- 第27章 畸形学概述课件
- 内控案防培训
评论
0/150
提交评论