




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
激光光谱分析与联用技术读书报告日期:2011年5月25日
激光诱导等离子体光谱法摘要:本文概述了激光诱导等离子光谱法的发展概况、基本原理、基本特性、仪器装置、应用方向和研究进展,并对该光谱法进行了展望。关键词:激光诱导等离子体光谱研究进展前言:激光诱导等离子体(LIP)近年来尤为受到关注,已经成为研究激光与物质相互作用的重要工具,在光谱分析,激光薄膜沉积和惯性约束核聚变等方面也有着广泛的应用。随着激光和阵列探测器的发展,激光诱导等离子体光谱技术(laser-inducedplasmaspectroscopy或者laser-inducedbreakdownspectroscopy)在近30年内取得长足发展,成为原子光谱分析阵营中的一颗明星,犹如早些年的火焰原子吸收光谱法、光电直读光谱法和电感耦合等离子体发射光谱法,在很多领域得到广泛的应用。1.发展概况LIPS自1962年被报道以来,已被广泛地应用到多个领域,如钢铁成分在线分析、宇宙探索、环境和废物的监测、文化遗产鉴定、工业过程控制、医药检测、地球化学分析,以及美国NASA的火星探测计划CHEMCAM等,并且开发出了许多基于LIPS技术的小型化在线检测系统。LIPS发展可以分为三个阶段:第一个阶段是至自1962年提出到70年代中期,主要是在于研发利用光电火花源产生等离子体的仪器。第二个阶段是从1980年开始,这种技术重新被人们重视,但实际应用仍然受到笨重的仪器阻碍。第三个阶段是1983年迄今,激光诱导等离子体光谱开始以缩写形式LIPS,开始被商业公司开发应用。这种趋势导致分析工作更加集中于发展坚固的、移动的仪器。此时光纤也被应用于LIPS系统中,主要用于将等离子体发射信息和激光脉冲耦合进光谱仪。近20多年来,LIPS测量技术在各个行业都有不同程度的应用。通过改进实验LIPS装置来提高测量精度。到上个世纪90年代中期开始,一些商业公司便开发出便携式半定量的成品仪器,LIPS仪器开始走向经济型商业化,从而更加有力地深入到各行业的应用中。2.基本原理脉冲激光束经透镜会聚后辐照在固体靶的表面,激光传递给靶材的能量大于热扩散和热辐射带来的能量损失,能量在靶表面聚集,当能量密度超过靶材的电离阈值时,即可在射,从两个互相垂直方向同时观测了等离子体的空间形状与大小。结果表明,波长为220nm的离子辐射主要集中于等离子体核心处的一较小区域,而波长为280nm的原子辐射几乎扩散到整个等离子体,而观测等离子体的凸出部位时,几乎没有220和280nm的特征辐射。另外通过适当的手段也可以改变等离子体的形状和特性,如用两互相平行的玻璃片限制等离子体而减小其扩散区域,或在等离子体上方放置一楔形物阻挡其扩散。实验研究表明,用不同形状的靶材来改变激光等离子体的喷射行为也是有效的。3.2等离子体的辐射通过测量等离子体辐射来诊断其基本特性是直接有效的。Grant认为在激光作用后,等离子体开始时辐射连续谱,接下来是离子线和原子线的辐射。黄庆举对脉冲Nd:YAG激光器烧蚀金属铜过程中的烧蚀靶和吸收靶上电荷的时间分辨测量发现,烧蚀靶上产生离子和高能电子,高能电子较离子率先从靶面射出,并且认为电子的韧致辐射是激光诱导等离子体连续辐射的主要机制。宋一中等利用时空分辨技术采集激光等离子体的时间飞行谱,根据Al等离子体连续辐射强度的时间分布规律,认为在激光脉冲作用到靶上的瞬间,韧致辐射占主导地位;在等离子体演化初期,复合辐射和韧致辐射共同产生等离子体的连续辐射;在等离子体演化后期,其连续辐射则主要是韧致辐射产生的。不同的环境气体和气压对激光等离子体的辐射的影响是明显的。满宝元等人利用时空分辨诊断技术,研究了脉冲激光烧蚀不同气压下金属靶过程中产生的等离子体羽的特性,实验证明,在大气压力下观测不到Al2+离子的信号,而在真空条件下能清楚地观察到。Knight等人用带Q开关的Nd:YAG激光器研究空气环境中Al合金样品时发现,当气压从7.9×104Pa降至5.3×103~1.3×104Pa,信号强度增加3~4倍,样品诱导量增大22倍,而气压再降低则信号减弱,诱导量增加幅度减小。3.3等离子体的电子温度和电子密度电子温度(Te)和电子密度(Ne)是等离子体的重要参数,直接影响激光诱导等离子体的辐射特性。Grant利用准分子激光器(308nm,28ns,40mJpulse-1)研究了等离子体的Te和Ne的分布,结果发现它们均随观测高度的增大以及环境气压的减小而减小。Hermann用XeCl准分子激光器,在N2环境中激发Ti靶的研究中测得,在形成等离子体的初期(t<200ns),环境气压的改变对Te和Ne没什么影响,之后(t>200ns)随着气压的增大而Te和Ne值的衰减速度将减慢。在改变激光输出功率时,Ne受功率影响远大于Te;该作者也曾依据Ti原子的光谱数据分析了CO2激光诱导的等离子体中Ne和Te随时间演化关系。崔执凤等人从描述等离子体中Ne随时间演化的方程出发,讨论了稳定或准稳定相、电离相、复合相的等离子体中Ne的近似表达式,并通过实验测定了准分子激光诱导等离子体中Mg原子和离子谱线宽度随时间的变化关系,由此探讨了等离子体中Ne随时间演化的行为和机理。结果表明,在等离子体形成的前200ns内,根据离子线的线宽得到的Ne随时间的变化曲线与电离相方程式描述的规律一致;超过200ns以后,Ne随时间的变化规律与复合相方程显示的特性相符。也有其他学者根据某一离子线的Stark展宽以及原子谱线的Boltzmann分布图,来分别求得等离子体中Te和Ne,进而分析等离子体的特性。另外,张延惠利用Nd:YAG激光器烧蚀Al靶获得等离子体,对激光烧蚀Al靶时的气体电离现象进行了分析。3.4等离子体的扩散速度扩散速度关系到激光等离子体中样品粒子的浓度和滞留时间。安承武等利用光学多道分析仪(OMA)分析了影响激光诱导等离子体喷射速度的因素,认为喷射等离子体的飞行速度主要依赖于作用在靶面上的激光能量密度。张树东等人在低真空条件下,从激光烧蚀Al靶测得辐射粒子Al的速度在106cms-1量级,且随靶面径向距离的增大而近似呈指数衰减。在距离靶面相同距离处,激光功率密度的增大反而使速度减小,并得出激波的波面基本为柱对称。Balazs等由实验证明,激光微等离子体产生后将吸收后续激光能量,使等离子体膨胀速度增大,约可达2.4×106cms-1。综上可知,尽管人们对激光诱导等离子体的形成、辐射、电子温度、电子密度、膨胀速度等方面进行了有意义的研究与探讨,取得了长足的进展,但是,全面准确地测定等离子体的基本特性尚需进行仔细的实验研究和理论分析。4.仪器装置:典型的LIPS光谱探测系统主要由激光光源、光束传输系统、分光系统、信号接收系统、时序控制系统和计算机等组成。系统架构示意图如图3所示。该系统的工作原理为:脉冲激光器输出的脉冲光束经聚焦透镜聚焦到样品表面,样品被烧蚀、蒸发、激发和离化后在样品表面形成高温、高压、高电子密度的等离子体的火花,辐射出包含原子和离子特征谱线的光谱;将等离子体光谱通过光纤导入到分光系统,分光系统后面的信号接收系统采集信号,将光信号转化成电信号输出;经数据处理电路进行滤波、放大、A/D转换、存储等处理过程,然后送入计算机进一步处理。经过上述步骤,即可完成整个光谱的采集过程。通常实验平台中引入时序控制系统,时序控制器控制激光脉冲发出和光信号检测之间的延迟时间,用于时间分辨光谱的研究和谱线信噪比的研究。图3:LIPS系统示意图(a)激光光源(b)脉冲激光头(c)反射镜(d)聚焦透镜(e)激发工作室(f)样品(g)光束传输收集系统(h)光纤(i)探测触发信号(j)分光系统(k)信号接收系统(l)电脑4.1激光光源LIBS技术的激光源通常采用调Q工作方式的Nd:YAG激光器、准分子激光器、CO2气体激光器等。脉冲宽度在纳秒量级,其脉冲功率密度通过透镜聚焦后可达到GW/cm2以上,波长分布在紫外到中红外范围内。Nd:YAG激光器在LIPS中尤为常用。其基频输出为1064nm,通过非线性晶体可获得二倍频532nm、三倍频355nm、四倍频266nm的输出。单脉冲能量一般可达500mJ,且可实现连续可调。激光重复率有1HZ、5HZ、10HZ、20HZ等可选项,在外触发模式下可以实现连续可调。脉宽一般在10ns以内。光束直径在毫米量级,光束发散角可低至0.4mrad以下。激光器通常由激励系统、激光工作物质和光学谐振腔三部分组成。激励系统就是产生光能、电能和化学能的装置,激光工作物质用以产生粒子数反转,光学谐振提供光学正反馈及光束的控制作用,保证了腔内的受激放大维持震荡,限制光束的传播方向和频率。Nd:YAG激光器是以掺钕钇铝石榴石晶体(Y3Al5O12:Nd3+)作为激光器的工作物质,在基质Y3Al5O12中掺杂浓度为1%左右的Nd3+。下面介绍下Nd:YAG调Q激光器的组成部件。4.1.1泵浦灯泵浦灯(如氙灯)的作用是利用其强光照射实现工作物质的粒子数反,是激光器能量的来源。4.1.2工作物质YAG激光棒YAG激光棒由于其工作物质四能级的特点,在泵浦灯的照射下,产生粒子数反转,使高能级上的原子数目大大高于低能级的原子数目,从而产生受激辐射。4.1.3共振腔YAG激光棒受激辐射产生的光子在共振腔中往返多次被放大形成受激辐射的光放大──激光最简单的光学共振腔是由放置在激光器两端的两个相互平行的反射镜组成。4.1.5聚光腔聚光腔的作用是为了有效的利用泵浦灯的光能。4.1.6Q开关Q开关由偏振片和调Q晶体组成。通常激光腔的损耗是不变的,一旦光泵浦使粒子数反转达到或略超过阈值时,激光器便开始震荡,激光上能级的粒子数由于受激辐射而减少,上能级不能积累很大的粒子数反转,激光器的输出峰值功率收到限制。通过改变激光腔的阈值,可以获得很高的粒子数反转。开始泵浦时,调高阈值,抑制震荡,粒子数反转便可积累很多,然后突然把阈值调到很低,上能级上的大量粒子数雪崩式跃迁到低能级,能量短时间内释放出来,输出巨脉冲。这就是Q开关的作用。调Q方法有转镜调Q、声光调Q、电光调Q和染料调Q等。调Q晶体通常用KTP、KD*P和LiNbO3等。4.1.7冷却系统调Q激光器的发热量很大,容易引起激光输出的不稳定,一般采取水冷却,使工作物质保持在恒定的温度。4.2光束传输系统光束传输系统的作用有两方面,一方面,把脉冲激光束聚焦到样品表面,另一方面,把等离子体光谱耦合入分光系统中。图4是几种典型的激光束聚焦系统,(a)是直接聚焦。(b)在后面加一凹透镜目的是可自由调节焦斑的位置,(c)用凹面镜在聚焦的同时改变激光束的方向。图5是典型的收集等离子体光系统,光纤前加透镜是增加耦合入光纤光强度,在等离子体光很强时,也可用光纤直接收集等离子体发光。图4激光束聚焦系统图5等离子体光谱耦合入分光系统4.3分光系统分光系统是将不同波长的“复合光”分开为一系列单一波长的“单色光”。常用的分光元件有棱镜和光栅。原子发射光谱与吸收光谱相比较,谱线更密,不容易分开。在LIPS系统中一般使用光栅或者光栅与棱镜组合作为分光元件。图6-8是几种常见的分光系统。图6是平面光栅(单色仪)分光系统,其中S1为入射狭缝,S2为出射狭缝,二者分别位于M1和M2的焦面上,M1和M2为球面或抛物面反射镜,G为光栅,一般由马达控制做旋转运动,由此在S2处出射不同波长的光达到分光效果。图7是凹面分光系统。凹面分光系统只有入射狭缝和出射狭缝,凹面光栅即起到分光作用和成像作用,由于结构简单,光谱的损耗少,在很多小型光谱仪中得到应用。图8是中阶梯光栅分光系统。入射光由准直镜1定向到光栅2上,衍射后的光经过棱形透镜3聚焦到系统的焦平面上,棱形透镜除了聚焦外还起着分级的作用,将处于不同几次相互重叠的光分开,在孔板4上成像。中阶梯光栅光谱仪有着很好的色散率和集光本领。图6平面光栅分光系统图7凹面光栅分光系统图8中阶梯光栅分光系统4.4信号探测系统常用的信号探测系统有光电倍增管(PMT)、光电二极管阵列(PDA)、电荷耦合器件(CCD)、电荷注入器件(CID)、和增强型电荷耦合器件(ICCD)。外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。PMT的优点是频谱响应范围宽,灵敏度高,响应速度快(纳秒级),但是PMT不能提供同时记录全谱。PDA上的每个感光单元可以看成一个光电二极管。CCD和CID两种装置相似,由光子产生的电荷被收集并储存在金属-氧化物-半导体(MOS)电容器中,从而可以准确地进行象素寻址而滞后极微。CID与CCD的主要区别在于读出过程,在CCD中,信号电荷必须经过转移,才能读出,信号一经读取即刻消失。而在CID中,信号电荷不用转移,是直接注入体内形成电流来读出的。即每当积分结束时,去掉栅极上的电压,存贮在势阱中的电荷少数载流子(电子)被注入到体内,从而在外电路中引起信号电流,这种读出方式称为非破坏性读取。ICCD与CCD比较,有信号增强功能和时间闸门控制特点,实现极弱信号采集、时间分辨等实验功能。4.5时序控制系统LIPS发射光谱的特点是原子和离子特征谱线叠加在连续谱上,特征普和连续谱在形成时间上有差别,在实验平台中加入时序控制系统,控制开始采集光谱的时间,有效地提高谱线的信噪比,其次,时序控制系统也是做时间分辨光谱研究必须的实验装置。5.应用方向:将激光技术应用于工业领域,在国内还是空白时,国外已经如火如荼的进行了。在上世纪80年代,美国的一家实验室LosAlamosNationalLaboratory的工作人员首先发现了此项技术,并将其应用于物质的化学分析。但是该技术并没有在美国国内引起多少反响,反而其他许多国家却对此表现了很大的兴趣。在9·11恐怖袭击后,美国军方开始将该技术应用于各种安检,快速检测分析疑似爆炸物。初步的试验结果表明,该技术不但在这方面大有用武之地,甚至还能快速分辨其他分析技术不能分辨的几种相近的炭疽热病毒。美国其他的研究机构(如Miziolek)还将该技术应用于持续检测地铁系统空气的成份。下面激光感生击穿光谱技术应用于各个工业领域的现状进行介绍。5.1钢铁中元素检测J.Gruber和J.Heitz等利用LIPS技术,仅用了7s就对液态钢中的合金元素进行了快速、在线的分析了。同时提出根据监测信息远程控制冶金过程的指导思想。Yamamoto等利用LIPS方法对钢铁、土壤和尘埃等样品进行分析钢铁中微量重金属元素和Si的检测极限。另外提出长脉冲对分析固体样品更有利,高输出频率更适用于快速测量或者对大面积样品和不均匀样品的平均测量。Mateo等通过LIPS实验,绘制了不同等级不锈钢中夹杂物成分的空间分布图,同样利用上述方法绘制复杂岩石表面成分的空间分布图。5.2军事应用2002年盐湖城冬季奥运会上,将LIBS用于安检得到很好的应用效果。圣地亚哥的海军司令部控制和海洋监视中心的Lieberman博士领导的研究小组设计了一个快速且廉价的LIPS仪器,用于测量土壤中铬和铅的污染程度,能够检测的最小浓度达到0.5ppm,低于环保局场地筛选水平。5.3太空探测应用于星体(月球和火星)表面元素成份探测上有显著的优势:对目标的快速定位,快速采样和遥感探测:几分钟的短积分时间;多元素同步探测;用重复脉冲除去目标表面的尘土和风华层的表面清洁能力;pp量级的探测限和探测灵敏度;高探测精度和准确度:能够探测几乎所有元素(包括H元素)。这些优势综合起来可以使得登陆车在有限的工作时间里返回更多、更有效的探测数据,极大的提高了探测效率。5.4水、土、空气等污染领域G.Arca和A.Ciucci等利用LIPS监测水污染,并对水中矿物元素进行了定量分析并给出定标曲线图。F.Capitelli和F.Colao等人用激光感生击穿光谱测量不同土壤中重金属的含量并与用ICP-AES的测量的平均值进行了比较得误差≤6%。L.DudragnePh.Adam和J.Amouroux等仅用20s的操作时间将LIPS定性和定量分析空气中的有害元素。给出了四个元素的检测限和相对精度。同时根据对各原子价态和电子跃迁分析估计出了各分子结构和浓度。利用激光诱导等离子体光谱分析技术的局部分析区域小、空间分辨率高、不破坏分析对象和能分析难溶物质等特点,LIPS在皮肤和骨骼测量、古艺术品鉴定等领域也有着长足的应用。6.研究进展:LIPS技术由于其自身具有的特点,特别是在其他分析方法无法满足工农业的需要时,受到越来越多的关注,更有不少科研工作者积极参与到这一领域来,推动这项技术向前快速发展。6.1国外研究进展情况1960年世界上第一台红宝石激光器问世,两年后Brech和Cross就实现了固体样品表面的激光诱导等离子体,开启了LIPS技术的历程。1963年,调Q激光器的发明大大促进了LIPS技术的发展,这种激光器的单个短脉冲具有极高的功率密度,足以产生光谱分析所需的激光等离子体。因此调Q激光器的发明被称为LIPS技术诞生的标志。1965年Zel’dovichandRaizer把LIPS技术的应用延伸到气体样品。70年代初,Jarrell-Ash和CarlZeiss制造了世界上第一台工业应用LIPS设备,需要说明的是,这套LIPS设备中,短脉冲激光用于烧蚀样品,然后用电弧激发样品。美国洛斯阿拉莫斯国家实验室(LANL)曾致力于LIPS分析技术的机理研究和应用,在1987年将其应用于乏燃料后处理工艺中铀浓度分析。在八十年代,LIPS被应用于液体样品以及分析土壤中的金属及污染物。德国卡尔斯鲁厄核中心从上世纪90年代初开始,致力于将LIPS应用于高放废液玻璃固化工艺控制分析,获得巨大成功,随后模拟高放废液玻璃固化体中27种元素的实时定量分析。意大利国家原子分子物理研究所A.CIUCCI和M.CORSI等提出了一种无需“校准曲线”的LIPS定量化分析技术—CF-LIBS,进一步发展了LIPS技术在定量分析中的应用。S.Palanco和J.J.Laserna利用多元线性回归法来定量分析物质成分含量,以消除基体效应的影响,获得很好的效果。爱尔兰等离子体科学和技术国家研究中心的MOHAMEDA.KHATER等就实验参数(空间分辨光谱,环境气体及压力大小,聚焦透镜类型,样品离焦距离等)对光谱特性的影响做过深入的研究。近年来,随着高功率脉冲激光光源、分光系统、探测器件、高时间分辨测量技术、以及光谱数据处理软件的迅速发展,LIBS分析机理研究不断深入,应用的领域逐渐增多。美国密西西比州立大学的DIAL(DiagnosticInstrumentationandAnalyticalLaboratory)实验室和Livermore的Sandia国家实验室利用LIPS技术实现烟气的在线测量,现已经开发了便携式的烟气在线分析仪。意大利的MarwanTechnology公司的MODI系统和澳大利亚的XRF公司SpectrolaserTarget系统以及美国海洋公司推出的便携式LIBS2500plus系统,都已进入商业应用阶段。美国宇航局喷气推进实验室于2009年发射的火星科学实验室(MarsScienceLaboratory简称MSL),搭载LIPS仪器ChemCam,用于火星岩石成分的快速实时分析。有关LIPS的原理、实验设备和应用的出版书籍也有很多,Griem的关于等离子体光谱(PlasmaSpectroscopy)和谱线展宽(SpectralLineBroadeningbyPlasmas),W.Lochte-Holtgreven编写的关于等离子体诊断的书(PlasmaDiagnostics),Bekefi出版的关于激光等离子体原理(PrinciplesofLaserPlasmasx),Cremers和Radziemski在一篇激光光谱的专论文章中记述了早期对于激光等离子体描述和分析应用的工作(LaserSpectroscopyanditsApplicatios),他们还编写了一本书,致力于激光诱导等离子体原理和它的应用(Laser-InducedPlasmasandApplications),A.W.Miziolek,V.Palleschi和I.Schechter合写的一本关于等离子体基础和应用的详细著作(Laser-InducedBreakdownSpectroscopy(LIBS):FundamentalsandApplications),Cremers和Radziemski于2008年出版的反映LIPS技术最新理论和实验进展(HandbookofLaser-InducedBreakdownSpectroscopy)。有关LIPS的学术论文也是逐年增多。从2000开始至今,每两年举办一次LIPS的专题研讨会,迄今为止已经成功举办了5次有关LIPS的国际会议,有力地促进了LIPS技术的发展。6.2国内研究进展国内的LIPS研究相对滞后些,近些年有更多的研究者关注这一领域,从事LIPS的基础研究和应用产品的开发,如对激光等离子体的产生机理,以及激光脉冲宽度,脉冲能量,环境气体成分,压强大小,延迟时间等试验条件对等离子体的影响等方面进行了一定研究。安徽师范大学的崔执凤等分析了激光诱导等离子体的时间分辨和空间分辨特性,计算并分析了激光诱导等离子体电子温度、电子密度的空间演化。对靶点的位置、激光的功率密度、环境气体的性质和压力等因素对等离子体特性的影响进行了研究,以及在外加静电场下的激光诱导的等离子体中离子、电子特性进行了实验研究。中国科学近代物理研究所的袁平等研究了激光参数与产生等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 平凉职业技术学院《影视美术》2023-2024学年第二学期期末试卷
- 衡阳师范学院南岳学院《食品分析(含仪器分析)》2023-2024学年第一学期期末试卷
- 南阳职业学院《热力学与统计物理》2023-2024学年第一学期期末试卷
- 劳务分包担保合同
- 委托技术服务合同
- 委托设备维修合同
- 废旧物资回收承包合同
- 《对不良诱惑说不》学会拒绝课件-3
- 20253月合同明确的楼宇自控系统第三方接入标准
- 店房租赁合同范本
- 临床肠气囊肿病影像诊断与鉴别
- DB11T 382-2017 建设工程监理规程
- 产学合作协同育人项目教学内容和课程体系改革项目申报书模板-基于产业学院的实践应用型人才培养
- 无人机操控技术课件:多旋翼无人机的飞行原理
- DB34∕T 3790-2021 智慧药房建设指南
- 被盗窃赔偿协议书范文范本
- 中职数学基础模块下册8-1随机事件教案
- 汽车行业系列深度五:复刻手机高端之路 华为赋能智电未来
- 物理因子治疗技术-光疗法
- 美观而安全的衣衫-包装设计 课件-2023-2024学年高中美术人美版(2019)选择性必修4 设计
- 垃圾填埋场运营合同范本
评论
0/150
提交评论