湖南长沙市湖南师大附中集团2024届数学八年级下册期末学业水平测试模拟试题含解析_第1页
湖南长沙市湖南师大附中集团2024届数学八年级下册期末学业水平测试模拟试题含解析_第2页
湖南长沙市湖南师大附中集团2024届数学八年级下册期末学业水平测试模拟试题含解析_第3页
湖南长沙市湖南师大附中集团2024届数学八年级下册期末学业水平测试模拟试题含解析_第4页
湖南长沙市湖南师大附中集团2024届数学八年级下册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南长沙市湖南师大附中集团2024届数学八年级下册期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列从左到右的变形中,是因式分解的是()A.m2-9=(x-3) B.m2-m+1=m(m-1)+1 C.m2+2m=m(m+2) D.(m+1)2=m2+2m+12.如图,抛物线与直线经过点,且相交于另一点,抛物线与轴交于点,与轴交于另一点,过点的直线交抛物线于点,且轴,连接,当点在线段上移动时(不与、重合),下列结论正确的是()A. B.C. D.四边形的最大面积为133.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:选手

方差(环2)

0.035

0.016

0.022

0.025

则这四个人种成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁4.矩形ABCD中,AD=AB,AF平分∠BAD,DF⊥AF于点F,BF交CD于点H.若AB=6,则CH=()A. B. C. D.5.在中,若,则()A. B. C. D.6.甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手

方差

0.023

0.018

0.020

0.021

则这10次跳绳中,这四个人发挥最稳定的是()A.甲 B.乙 C.丙 D.丁7.如果把分式中x、y的值都扩大为原来的2倍,则分式的值()A.扩大为原来的4倍 B.扩大为原来的2倍C.不变 D.缩小为原来的8.李雷同学周末晨练,他从家里出发,跑步到公园,然后在公园玩一会儿篮球,再走路回家,那么,他与自己家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A. B. C. D.9.若n是实数,且n>0,则一次函数y=﹣nx+n的图象经过的象限是()A.一、二、三 B.一、三、四 C.一、二、四 D.二、三、四10.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大11.下列各式中,不是最简二次根式的是()A. B. C. D.12.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直 B.对边平行C.对边相等 D.对角线互相平分二、填空题(每题4分,共24分)13.在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.14.一组数据:3,0,,3,,1.这组数据的众数是_____________.15.在平行四边形ABCD中,AE平分交边BC于E,DF平分交边BC于F.若,,则_________.16.若□ABCD中,∠A=50°,则∠C=_______°.17.一组数据:的方差是__________.18.两个相似三角形的周长分别为8和6,若一个三角形的面积为36,则另一个三角形的面积为________.三、解答题(共78分)19.(8分)某种商品的定价为每件20元,商场为了促销,决定如果购买5件以上,则超过5件的部分打7折.(1)求购买这种商品的货款y(元)与购买数量x(件)之间的函数关系;(2)当x=3,x=6时,货款分别为多少元?20.(8分)如图,图1中ΔABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.图1图2(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D、E分别在线段AB、AC上(点E与点A不重合),其他条件不变,如图2,则(1)题中的结论是否成立?若成立,请证明;若不成立.请说明理由.21.(8分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.(1)连接BC,求BC的长;(2)求△BCD的面积.22.(10分)如图,四边形ABCD和四边形AEFB都是平行四边形,求证:△ADE≌△BCF.23.(10分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF24.(10分)如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.25.(12分)解方程:(1)x2+2x=0(2)x2-4x-7=0.26.平衡车越来越受到中学生的喜爱,某公司今年从厂家以3000元/辆的批发价购进某品牌平衡车300辆进行销售,零售价格为4200元/辆,暑期将至,公司决定拿出一部分该品牌平衡车以4000元/辆的价格进行促销.设全部售出获得的总利润为y元,今年暑假期间拿出促销的该品牌平衡车数量为x辆,根据上述信息,解答下列问题:(1)求y与x之间的函数解析式(也称关系式),并直接写出x的取值范围;(2)若以促销价进行销售的数量不低于零售价销售数量的,该公司应拿出多少辆该品牌平衡车促销才能使这批车的销售利润最大?并求出最大利润.

参考答案一、选择题(每题4分,共48分)1、C【解析】

把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫分解因式,根据以上内容逐个判断即可.【详解】把一个多项式化成几个整式的积的形式,叫把这个多项式因式分解,也叫分解因式,A、等号前后的字母不一样,故本选项错误;B、不是因式分解,故本选项错误;C、左右相等,且是因式分解,故本选项正确;D、不是因式分解,故本选项错误;故选C.【点睛】本题考查了因式分解的定义的应用,能理解因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫分解因式.2、C【解析】

】(1)当MN过对称轴的直线时,解得:BN=,而MN=,BN+MN=5=AB;

(2)由BC∥x轴(B、C两点y坐标相同)推知∠BAE=∠CBA,而△ABC是等腰三角形,∠CBA≠∠BCA,故∠BAC=∠BAE错误;

(3)如上图,过点A作AD⊥BC、BE⊥AC,由△ABC是等腰三角形得到:EB是∠ABC的平分线,∠ACB-∠ANM=∠CAD=∠ABC;

(4)S四边形ACBM=S△ABC+S△ABM,其最大值为.【详解】解:将点A(2,0)代入抛物线y=ax2-x+4与直线y=x+b

解得:a=,b=-,

设:M点横坐标为m,则M(m,m2-m+4)、N(m,m-),

其它点坐标为A(2,0)、B(5,4)、C(0,4),

则AB=BC=5,则∠CAB=∠ACB,

∴△ABC是等腰三角形.

A、当MN过对称轴的直线时,此时点M、N的坐标分别为(,-)、(,),

由勾股定理得:BN=,而MN=,

BN+MN=5=AB,

故本选项错误;

B、∵BC∥x轴(B、C两点y坐标相同),

∴∠BAE=∠CBA,而△ABC是等腰三角形不是等边三角形,

∠CBA≠∠BCA,

∴∠BAC=∠BAE不成立,

故本选项错误;

C、如上图,过点A作AD⊥BC、BE⊥AC,

∵△ABC是等腰三角形,

∴EB是∠ABC的平分线,

易证:∠CAD=∠ABE=∠ABC,

而∠ACB-∠ANM=∠CAD=∠ABC,

故本选项正确;

D、S四边形ACBM=S△ABC+S△ABM,

S△ABC=10,

S△ABM=MN•(xB-xA)=-m2+7m-10,其最大值为,

故S四边形ACBM的最大值为10+=12.25,故本选项错误.

故选:C.【点睛】本题考查的是二次函数综合题,涉及到一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,抛物线与x轴的交点,以及等腰三角形、平行线等几何知识,是一道难度较大的题目.3、B【解析】

方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.【详解】解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最小.∴这四个人种成绩发挥最稳定的是乙.故选B.4、D【解析】

过作,交于,交于,则,证是等腰直角三角形,得出,证,为的中位线,进而得出答案.【详解】解:如图,过作,交于,交于,则,四边形是矩形,,,,,,平分,,,,,是等腰直角三角形,,点是的中点,,为的中位线,,,;故选:.【点睛】本题考查了矩形的性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,三角形中位线定理等知识;熟练掌握矩形的性质和等腰直角三角形的判定与性质是解本题的关键.5、A【解析】

根据平行四边形的性质可得出,,因此,,即可得出答案.【详解】解:根据题意可画出示意图如下:∵四边形ABCD是平行四边形,∴,∴,∵,∴,∴.故选:A.【点睛】本题考查的知识点是平行四边形的性质,属于基础题目,易于理解掌握.6、B【解析】试题分析:方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.由S乙2<S丙2<S丁2<S甲2,∴这10次跳绳中,这四个人发挥最稳定的是乙.故选B.考点:方差,算术平均数.7、B【解析】

根据x,y都扩大2倍,即可得出分子扩大4倍,分母扩大2倍,由此即可得出结论.【详解】解:∵分式中的x与y都扩大为原来的2倍,∴分式中的分子扩大为原来的4倍,分母扩大为原来的2倍,∴分式的值扩大为原来的2倍.故选:B.【点睛】此题考查分式的性质,解题关键在于掌握其性质8、B【解析】

他跑步到离家较远的公园,打了一会儿篮球后慢步回家,去的时候速度快,用的时间少,然后在公园打篮球路程是不变的,回家慢步用的时间多.据此解答.【详解】根据以上分析可知能大致反映当天李雷同学离家的距离y与时间x的关系的是B.故选:B.【点睛】本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系是解答本题的关键.9、C【解析】

根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,结合函数图象的性质可得答案.【详解】解:根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,则函数的图象过一、二、四象限,故选:C.【点睛】本题考查一次函数的图象的性质,应该识记一次函数y=kx+b在k、b符号不同情况下所在的象限.10、D【解析】

A.摸到红球是随机事件,故此选项错误;B.摸到白球是随机事件,故此选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确;故选D.11、A【解析】

根据最简二次根式的定义即可判断.【详解】解:A、=,故不是最简二次根式;B、是最简二次根式;C、是最简二次根式;D、是最简二次根式.故本题选择A.【点睛】掌握判断最简二次根式的依据是解本题的关键.12、A【解析】

根据菱形及平行四边形的性质,结合选项即可得出答案.【详解】A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选A.【点睛】此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.二、填空题(每题4分,共24分)13、2【解析】

根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.【详解】作点E′和E关于BD对称.则连接AE′交BD于点P,

∵四边形ABCD是菱形,AB=4,E为AD中点,

∴点E′是CD的中点,

∴DE′=DC=×4=2,AE′⊥DC,

∴AE′=.

故答案为2.【点睛】此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.14、2【解析】

根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】解:数据:2,0,,2,,1中,2出现的次数最多,所以这组数据的众数是2.故答案为:2.【点睛】本题考查了众数的定义,属于基础概念题型,熟知众数的概念是关键.15、4或9【解析】

首先根据题意画出图形,可知有两种形式,第一种为AE与DF未相交,直接交于BC,第二种为AE与DF相交之后再交于BC.此时根据角平分线的定义和平行四边形的性质找到线段直接的关系.【详解】(1)如图:∵AE平分∠BAD∴∠BAE=∠DAE又∵AD∥BC∴∠DAE=∠BEA即∠BEA=∠BEA∴AB=BE同理可得:DC=FC又∵AB=DC∴BE=CF∵BC=AD=13,EF=5∴BE=FC=(BC-EF)÷2=(13-5)÷2=4即AB=BE=4(2)∵AE平分∠BAD∴∠BAE=∠DAE又∵AD∥BC∴∠DAE=∠BEA即∠BEA=∠BEA∴AB=BE同理可得:DC=FC又∵AB=DC∴BE=CF则BE-EF=CE-EF即BF=CE而BC=AD=13,EF=5∴BF=CE=(BC-EF)÷2=(13-5)÷2=4∴BE=BF+EF=4+5=9故AB=BE=9综上所述:AB=4或9【点睛】本题解题关键在于,根据题意画出图形,务必考虑多种情况,不要出现漏解的情况.运用到的知识点有:角平分线的定义与平行四边形的性质.16、50【解析】因为平行四边形的对角相等,所以∠C=50°,故答案为:50°.17、.【解析】

根据方差的公式进行解答即可.【详解】解:==2019,==0.故答案为:0.【点睛】本题考查了方差的计算.18、64或【解析】

根据相似三角形周长的比等于相似比,面积的比等于相似比的平方求出面积比,根据题意计算即可.【详解】解:∵两个相似三角形的周长分别为8和6,∴两个相似三角形的周长之比为4:3,∴两个相似三角形的相似比是4:3,∴两个相似三角形的面积比是16:9,又一个三角形的面积为36,设另一个的面积为S,则16:9=S:36或16:9=36:S,∴S=64或,故答案为:64或.【点睛】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.三、解答题(共78分)19、(1)y=(2)114【解析】试题分析:(1)根据题目条件:如果购买5件以上,则超过5件的部分打7折即可得到y

(元)与购买数量x

(件)之间的函数关系;

(2)把x=3,x=6分别代入(1)中的函数关系式即可求出贷款数.试题解析:(1)根据商场的规定,当0<x≤5时,y=20x,当x>5时,y=20×5+(x﹣5)×20×0.7=100+14(x﹣5),所以,货款y(元)与购买数量x(件)之间的函数关系是Y=(x是正整数);(2)当x=3时,y=20×3=60(元)当x=6时,y=100+14×(6﹣5)=114(元).20、(1)证明见解析;(2)结论仍然成立;(3)【解析】

(1)利用等边三角形的性质以及三线合一证明得出结论;(2)由中位线的性质、平行线的性质,等边三角形的性质以及三角形全等的判定与性质证明【详解】(1)证明:∵ΔABC是等边三角形,∴∠ABC=∠ACB=,AB=BC=AC∵DE是中位线,∴E是AC的中点,∴BE平分∠ABC,AE=EC∴∠EBC=∠ABC=∵AE=CF,∴CE=CF,∴∠CEF=∠F∵∠CEF+∠F=∠ACB=,∴∠F=,∴∠EBC=∠F,∴BE=EF(2)结论仍然成立.∵DE是由中位线平移所得;∴DE//BC,∴∠ADE=∠ABC=,∠AED=∠ACB=,∴ΔADE是等边三角形,∴DE=AD=AE,∵AB=AC,∴BD=CE,∵AE=CF,∴DE=CF∵∠BDE=-∠ADE=,∠FCE=-∠ACB=,∴∠FCE=∠EDB,∴ΔBDE≌ΔECF,∴BE=EF【点睛】此题考查等边三角形的判定与性质,三角形中位线定理和全等三角形的判定与性质,解题关键在于利用三线合一证明得出结论21、(1)BC=15;(2)S△BCD=2.【解析】

(1)根据勾股定理可求得BC的长.

(2)根据勾股定理的逆定理可得到△BCD也是直角三角形,根据三角形的面积即可得到结论.【详解】(1)∵∠A=90°,AB=9,AC=12∴BC==15,(2)∵BC=15,BD=8,CD=1∴BC2+BD2=CD2∴△BCD是直角三角形∴S△BCD=×15×8=2.【点睛】本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过作辅助线证明三角形是直角三角形是解决问题的关键.22、见解析.【解析】

由四边形ABCD和四边形AEFB,证明四边形DEFC为平行四边形,根据平行四边形的性质可以得到△ADE和△BCF的三边相等,从而证明它们全等.【详解】解:证明:∵四边形ABCD为平行四边形,∴,∵四边形AEFB是平行四边形,∴,∴,∴四边形DEFC为平行四边形,∴DE=FC,在△ADE和△BCF中∵∴△ADE≌△BCF(SSS)【点睛】本题考查全等三角形的判定,平行四边形的判定和性质.在解决本题中易证明三角形的两组对应边AD=BC,AE=BF,所以解题关键是证明四边形DEFC为平行四边形,并因此证明DE=FC.23、详见解析【解析】

根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论