吉林省松原市前郭县2024年八年级下册数学期末复习检测试题含解析_第1页
吉林省松原市前郭县2024年八年级下册数学期末复习检测试题含解析_第2页
吉林省松原市前郭县2024年八年级下册数学期末复习检测试题含解析_第3页
吉林省松原市前郭县2024年八年级下册数学期末复习检测试题含解析_第4页
吉林省松原市前郭县2024年八年级下册数学期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省松原市前郭县2024年八年级下册数学期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.八年级甲、乙、丙三个班的学生人数相同,上期期末体育成绩的平均分相同,三个班上期期末体育成绩的方差分别是:S甲2=6.4,A.甲班 B.乙班 C.丙班 D.上哪个班都一样2.已知一次函数的图象经过点A,且函数值y随x的增大而减小,则点A的坐标可能是A. B. C. D.3.平行四边形边长为和,其中一内角平分线把边长分为两部分,这两部分是()A.和 B.和 C.和 D.和4.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数5.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21 C.抽查了10个同学 D.中位数是506.若点P的坐标为(3,4),则点P关于x轴对称点的点P′的坐标为()A.(4,-3) B.(3,-4) C.(-4,3) D.(-3,4)7.如图,一次函数y=kx+b的图象经过点(﹣1,0)与(0,2),则关于x的不等式kx+b>0的解集是()A.x>﹣1 B.x<﹣1 C.x>2 D.x<28.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产--“抖空竹”引入阳光特色大课间下面左图是某同学“抖空竹”时的一个瞬间,小聪把它抽象成右图的数学问题:已知,,,则的度数是A. B. C. D.9.已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:x…-3-2-1113…y…-27-13-335-3…下列结论:①a<1;②方程ax2+bx+c=3的解为x1=1,x2=2;③当x>2时,y<1.其中所有正确结论的序号是()A.①②③ B.① C.②③ D.①②10.已知多项式x2+bx+c分解因式为(x+3)(x﹣1),则b、c的值为()A.b=3,c=﹣2 B.b=﹣2,c=3 C.b=2,c=﹣3 D.b=﹣3,c=﹣2二、填空题(每小题3分,共24分)11.如果一个多边形的每一个内角都是120°,那么这个多边形是____.12.我国很多城市水资源短缺,为了加强居民的节水意识,某自来水公司采取分段收费标准.某市居民月交水费y(单位:元)与用水量x(单位:吨)之间的关系如图所示,若某户居民4月份用水18吨,则应交水费_____元.13.某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.14.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)15.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.16.顺次连接等腰梯形各边中点所得的四边形是_____.17.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).18.把我们平时使用的一副三角板,如图叠放在一起,则∠的度数是___度.三、解答题(共66分)19.(10分)如图,在中,点,分别为边,的中点,延长到点使.求证:四边形是平行四边形.20.(6分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?21.(6分)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,求证:且(2)将△COD绕点O旋转到图2、图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论22.(8分)甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用天,且甲队单独植树天和乙队单独植树天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的倍.那么甲队至少再单独施工多少天?23.(8分)已知,如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF∥AC交BC于F,请判断BE与FC的数量关系,并说明理由。24.(8分)先化简,再求值,其中a=3,b=﹣1.25.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射线BD为∠ABC的平分线,交AC于点D.动点P以每秒2个单位长度的速度从点B向终点C运动.作PE⊥BC交射线BD于点E.以PE为边向右作正方形PEFG.正方形PEFG与△BDC重叠部分图形的面积为S.(1)求tan∠ABD的值.(2)当点F落在AC边上时,求t的值.(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,求S与t之间的函数关系式.26.(10分)先分解因式,再求值:,其中,.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

先比较三个班方差的大小,然后根据方差的意义进行判断.【详解】解:∵S2甲=6.4,S2乙=5.6,S2丙=7.1,∴S2乙<S2甲<S2丙,∴乙班成绩最稳定,杜老师更喜欢上课的班是乙班.故选:B.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2、B【解析】

先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】解:一次函数的函数值y随x的增大而减小,.A、当,时,,解得,此点不符合题意,故本选项错误;B、当,时,,解得,此点符合题意,故本选项正确;C、当,时,,解得,此点不符合题意,故本选项错误;D、当,时,,解得,此点不符合题意,故本选项错误.故选:B.【点睛】考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.3、C【解析】

作出草图,根据角平分线的定义求出∠BAE=45°,然后判断出△ABE是等腰直角三角形,然后求出BE=AB,再求出CE即可得解.【详解】解:如图,∵AE平分∠BAD,

∴∠BAE=45°,

又∵∠B=90°,

∴△ABE是等腰直角三角形,

∴BE=AB=10cm,

∴CE=BC-AB=15-10=5cm,

即这两部分的长为5cm和10cm.

故选:C.【点睛】本题考查了矩形的性质,角平分线的定义,熟记性质判断出△ABE是等腰直角三角形是解题的关键.4、C【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].41码共20件,最多,41码是众数,故选C考点:方差;加权平均数;中位数;众数5、B【解析】

根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6、B【解析】

根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.【详解】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴P′的坐标为(3,−4).故选:B.【点睛】本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.7、A【解析】

根据一次函数y=kx+b的图象经过点(-1,0),且y随x的增大而增大,得出当x>-1时,y>0,即可得到关于x的不等式kx+b>0的解集是x>-1.【详解】由题意可得:一次函数y=kx+b中,y>0时,图象在x轴上方,x>-1,则关于x的不等式kx+b>0的解集是x>﹣1,故选A.【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.8、A【解析】

直接利用平行线的性质得出,进而利用三角形的外角得出答案.【详解】如图所示:延长DC交AE于点F,,,,,.故选A.【点睛】本题考查了平行线的性质、三角形外角的性质,正确添加辅助线、熟练掌握平行线的性质是解题的关键.9、D【解析】

根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.【详解】解:①由图表中数据可知:x=−1和3时,函数值为−3,所以,抛物线的对称轴为直线x=1,而x=1时,y=5最大,所以二次函数y=ax2+bx+c开口向下,a<1;故①正确;②∵二次函数y=ax2+bx+c的对称轴为x=1,在(1,3)的对称点是(2,3),∴方程ax2+bx+c=3的解为x1=1,x2=2;故②正确;③∵二次函数y=ax2+bx+c的开口向下,对称轴为x=1,(1,3)的对称点是(2,3),∴当x>2时,y<3;故③错误;所以,正确结论的序号为①②故选D.【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,有一定难度.熟练掌握二次函数图象的性质是解题的关键.10、C【解析】

因式分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出b与c的值即可.【详解】解:根据题意得:x2+bx+c=(x+3)(x-1)=x2+2x-3,则b=2,c=﹣3,故选:C.【点睛】本题考查多项式与多项式相乘得到的结果相等,则要求等号两边同类项的系数要相同,熟练掌握多项式的乘法法则是解决本题的关键.二、填空题(每小题3分,共24分)11、六边形.【解析】依据多边形的内角和公式列方程求解即可.解:180(n﹣2)=120°n解得:n=1.故答案为:六边形.12、38.8【解析】

根据图形可以写出两段解析式,即可求得自来水公司的收费数.【详解】将(10,18)代入y=ax得:10a=18,解得:a=1.8,故y=1.8x(x⩽10)将(10,18),(15,31)代入y=kx+b得:,解得:,故解析式为:y=2.6x−8(x>10)把x=18代入y=2.6x−8=38.8.故答案为38.8.【点睛】本题考查用一次函数解决实际问题,关键是应用一次函数的性质.13、20%【解析】

设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1-x),第二次降价后的单价是原来的(1-x)2,根据题意列方程求解即可.【详解】设平均每次降价的百分率为x,根据题意列方程得250×(1-x)2=160,解得x1=0.2,2,x2=1.8(不符合题意,舍去),即该商品平均每次降价的百分率为20%,故答案为:20%.【点睛】本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.14、中位数【解析】

七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【详解】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.【点睛】考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.15、3≤S≤1.【解析】

根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.【详解】∵点A、B的坐标分别为(-5,0)、(-2,0),∴AB=3,y=-2x2+4x+8=-2(x-1)2+10,∴顶点D(1,10),由图象得:当0≤x≤1时,y随x的增大而增大,当1≤x≤3时,y随x的增大而减小,∴当x=3时,即m=3,P的纵坐标最小,y=-2(3-1)2+10=2,此时S△PAB=×2AB=×2×3=3,当x=1时,即m=1,P的纵坐标最大是10,此时S△PAB=×10AB=×10×3=1,∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤1;故答案为3≤S≤1.【点睛】本题考查了二次函数的增减性和对称性,及图形和坐标特点、三角形的面积,根据P的纵坐标确定△PAB的面积S的最大值和最小值是本题的关键.16、菱形【解析】

解:顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:

已知:等腰梯形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,

求证:四边形EFGH为菱形.

证明:连接AC,BD,

∵四边形ABCD为等腰梯形,

∴AC=BD,

∵E、H分别为AD、CD的中点,

∴EH为△ADC的中位线,

∴EH=AC,EH∥AC,

同理FG=AC,FG∥AC,

∴EH=FG,EH∥FG,

∴四边形EFGH为平行四边形,

同理EF为△ABD的中位线,

∴EF=BD,又EH=AC,且BD=AC,∴EF=EH,则四边形EFGH为菱形.

故答案为菱形.17、xn+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.18、105【解析】

根据三角板上的特殊角度,外角与内角的关系解答.【详解】根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,∵∠α是△BDE的外角,∴∠α=∠AEB+∠B=45°+60°=105°故答案为:105.【点睛】此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角.三、解答题(共66分)19、证明见解析.【解析】

根据中位线的性质得到,再得到,故可证明.【详解】解:∵,分别为,的中点,∴EF是△ABC的中位线,∴.∵,∴.∴∴四边形是平行四边形.【点睛】此题主要考查平行四边形的判定,解题的关键是熟知三角形的中位线定理及平行四边形的判定方法.20、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.【解析】

(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+1.当x=23.5时,y=﹣2x+1=2.答:当天该水果的销售量为2千克.(2)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.【点睛】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.21、(1)详见解析;(2)详见解析.【解析】

(1)首先证明△AOD≌△BOC(SAS),利用全等三角形的性质得到BC=AD,再利用直角三角形斜边中线的性质即可得到OH=BC=AD,然后通过全等三角形对应角相等以及直角三角形两锐角互余证明OH⊥AD;(2)如图2中,延长OH到E,使得HE=OH,连接BE,通过证明△BEO≌△ODA,可得OH=OE=AD以及∠DAO+∠AOH=∠EOB+∠AOH=90°,问题得证;如图3中,延长OH到E,使得HE=OH,连接BE,延长EO交AD于G,同理可证OH=OE=AD,∠DAO+∠AOG=∠EOB+∠AOG=90°.【详解】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,在△AOD与△BOC中,∵OA=OB,∠AOD=∠BOC,OD=OC,∴△AOD≌△BOC(SAS),∴BC=AD∵H是BC中点,∴OH=BC=AD.∵△AOD≌△BOC∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴∠OBH=∠HOB=∠OAD,又∵∠OAD+∠ADO=90°,∴∠ADO+∠BOH=90°,∴OH⊥AD;(2)解:结论:OH⊥AD,OH=AD证明:如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA,∴OE=AD,∴OH=OE=AD.由△BEO≌△ODA,知∠EOB=∠DAO,∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.易证△BEO≌△ODA,∴OE=AD,∴OH=OE=AD.由△BEO≌△ODA,知∠EOB=∠DAO,∴∠DAO+∠AOG=∠EOB+∠AOG=90°,∴∠AGO=90°,∴OH⊥AD.【点睛】本题考查了旋转变换,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)甲队单独完成此项任务需1天,乙队单独完成此项任务需20天;(2)甲队至少再单独施工2天.【解析】

(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,根据甲队单独植树7天和乙队单独植树5天的工作量相同,可得出关于x的一元一次方程,解之即可得出结论;(2)设甲队再单独施工y天,根据甲队完成的工作量+乙队完成的工作量不少于总工作量(1),即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【详解】(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,依题意,得:,解得:x=20,经检验,x=20是原方程的解,∴x+2=1.答:甲队单独完成此项任务需1天,乙队单独完成此项任务需20天.(2)设甲队再单独施工y天,依题意,得:,解得:y≥2.答:甲队至少再单独施工2天.【点睛】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,一元一次不等式的应用,解答时验根是学生容易忽略的地方.23、见解析【解析】

由BD是∠ABC的平分线,DE∥BC,易证得△EBD是等腰三角形,即BE=DE,又由DE∥BC,EF∥AC,可得四边形DEFC是平行四边形,即可得DE=FC,即可证得BE=FC.【详解】证明:∵BD是∠ABC的平分线,

∴∠EBD=∠CBD,

∵DE∥BC,

∴∠CBD=∠EDB,

∴∠EBD=∠EDB,

∴BE=DE,

∵DE∥BC,EF∥AC,

∴四边形DEFC是平行四边形,

∴DE=FC,

∴BE=FC.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定、角平分线的定义以及平行线的性质.此题难度适中,注意有角平分线与平行线易得等腰三角形,注意数形结合思想的应用.24、,.【解析】

根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论