下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
讲授内容备注第11讲(第11周)单元与整体分析1.能量原理有限单元法的核心是建立单元刚度矩阵,有了单元刚度矩阵,加以适当组合,可以得到平衡方程组,剩下的就是一些代数运算了。在弹性力学平面问题计算中,我们是用直观方法建立单元刚度矩阵的,其优点是易于理解,并便于初学者建立清晰的力学概念。但这种直观方法也是有缺点的:一方面,对于比拟复杂的单元,依靠它建立单元刚度矩阵是有困难的;另一方面,它也不能给出关于收敛性的证明。把能量原理应用于有限单元法,就可以克服这些缺点。能量原理为建立有限单元法根本公式提供了强有力的工具。在各种能量原理中,虚位移原理和最小势能原理应用最为方便,因而得到了广泛的采用。(1)虚位移原理。所谓虚位移可以是任何无限小的位移,它在结构内部必须是连续的,在结构的边界上必须满足运动学边界条件,例如对于悬臂梁来说,在固定端处,虚位移及其斜率必须等于零。图2-15固体的边界条件考虑图2-15所示的物体,它受到外力F1、F2、…等的作用,记F=[F1F2F在这些外力作用下,物体的应力为现在假设物体发生了虚位移,在外力作用处与各个外力相应方向的虚位移为,记上述虚位移所产生的虚应变为在产生虚位移时,外力已作用于物体,而且在虚位移过程中,外力保持不变。因此,外力在虚位移上所做的虚功是(2-1整个物体的虚应变能为(2-1虚位移原理说明,如果在虚位移发生之前,物体处于平衡状态,那末在虚位移发生时,外力所做虚功等于物体的虚应变能,即(2-1虚位移原理不但适用于线性材料,也适用于非线性材料。(2)最小势能原理。物体的势能定义为物体的应变能U与外力势V之差,即(2-1其中应变能U为外力势由下式计算式中,右端第l项为集中力F的势;第2项为体积力q的势;第3项为面力的势;Sσ为面力作用的外表;rb为外表Sσ上的位移。最小势能原理可表达如下:在所有满足边界条件的协调〔连续〕位移中,那些满足平衡条件的位移使物体势能取驻值,即(2-1对于线性弹性体,势能取最小值。最小势能原理可以用虚位移原理证明。最小势能原理可用虚位移加以证明。2.用能量原理求单元刚度矩阵和节点荷载利用最小势能原理,可以求出单元刚度矩阵及节点荷载。对空间问题,设一个单元,在各节点上作用着节点力Fe,单元节点位移为δe、单元应变为ε=Bδe,物体应变能为即其中Ke为单元刚度矩阵(2-1单元节点力的外力势为那么单元的势能为由最小势能原理,,所以有那么节点力为(2-1从物理上考虑,应变能必须是正量,而节点位移又是任意的,所以单元刚度矩阵是正定的。由此可以推断势能的二阶变分是非负的。既然势能的一阶变分等于领,二阶变分又非负,从而可以断定势能取最小值。把r=Nδe代入外力势的表达式中,得到体力q与面力的势为所以单元的势能为根据最小势能原理得到(2-1-58)(2-1-59)以上诸式跟由虚位移原理推得结论一致。3.用能量原理求总体平衡方程结构整体刚度矩阵为K,节点位移为δ,结构内能为(2-1-60){P}为作用在节点上的荷载,荷载的势为(2-1-61)结构的势能为由最小势能原理,势能取驻值,即那么得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆市2025届高三第一次学业质量调研抽测化学试题 (含答案)
- 四川省泸州市江阳区泸州老窖天府中学2024-2025学年九年级上学期1月期末化学试卷(含答案)
- 湖北省部分市州2024-2025学年高二年级(上)期末质量监测数学试题(含答案)
- 安徽省阜阳市临泉第二中学2024-2025学年高三上学期12月月考政治试题(含答案)
- 语文-山东省潍坊市、临沂市2024-2025学年度2025届高三上学期期末质量检测试题和答案
- 2024建筑门窗幕墙专业分包合同模板
- 2024货物运输长期合同范本格式
- 2024酒店屋顶花园建设承包合同
- 2024适用型房产交易协议样本版B版
- 福建省南平市建阳县回龙中学2021-2022学年高三物理下学期期末试卷含解析
- DBJ∕T 15-120-2017 城市轨道交通既有结构保护技术规范
- CJJ181-2012 城镇排水管道检测与评估技术规程
- 生物医学电子学智慧树知到期末考试答案章节答案2024年天津大学
- 2023 版《中国近现代史纲要》 课后习题答案
- DB11T 489-2024 建筑基坑支护技术规程
- 一例火电机组有功功率突变原因分析及预防措施
- 数学寒假计划书
- 第五章 中国特色社会主义理论体系的形成发展(一)
- 低空经济公司设立可行性分析
- 2024新能源风电场集电线路施工方案
- 2023-2024学年江西省吉安市吉州区八年级(上)期末数学试卷(含解析)
评论
0/150
提交评论