江苏无锡梁溪区四校联考2024年八年级下册数学期末质量检测模拟试题含解析_第1页
江苏无锡梁溪区四校联考2024年八年级下册数学期末质量检测模拟试题含解析_第2页
江苏无锡梁溪区四校联考2024年八年级下册数学期末质量检测模拟试题含解析_第3页
江苏无锡梁溪区四校联考2024年八年级下册数学期末质量检测模拟试题含解析_第4页
江苏无锡梁溪区四校联考2024年八年级下册数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏无锡梁溪区四校联考2024年八年级下册数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.2.如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为()A.2 B.3 C.4 D.3.下列各组数分别为三角形的三边长:①2,3,4:②5,12,13:③;④m2﹣n2,m2+n2,2mm(m>n),其中是直角三角形的有()A.4个 B.3个 C.2个 D.1个4.化简:的结果是()A. B. C.﹣ D.﹣5.如图,在平面直角坐标系中,点在反比例函数的图象上.若,则自变量的取值范围是()A. B. C.且 D.或6.关于的方程有实数解,那么的取值范围是()A. B. C. D.且7.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为()A.或- B.或- C.或- D.或-8.下面四张扑克牌其中是中心对称的是()A. B. C. D.9.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是()A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃10.某同学的身高为1.6m,某一时刻他在阳光下的影长为1.2m,与他相邻的一棵树的影长为3.6m,则这棵树的高度为()A.5.3m B.4.8m C.4.0m D.2.7m11.若A(a,3),B(1,b)关于x轴对称,则a+b=()A.2 B.-2 C.4 D.-412.已知两点(x1,y1),A.y1>y2>0 B.二、填空题(每题4分,共24分)13.如图,的对角线,交于点,点是的中点,若,则的长是______.14.如图,在矩形中,,,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把沿EF折叠,点B落在点处.若,当是以为腰的等腰三角形时,线段的长为__________.15.若分式的值为0,则的值是_____.16.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.17.已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为____.18.如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.三、解答题(共78分)19.(8分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:土特产种类甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.20.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?21.(8分)如图,在梯形中,,,,,(1)求对角线的长度;(2)求梯形的面积.22.(10分)如图,,平分,交于点,平分,交于点,连接.求证:四边形是菱形.23.(10分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);24.(10分)如图所示,中,,、分别为、的中点,延长到,使.求证:四边形是平行四边形.25.(12分)菱形中,,,为上一个动点,,连接并延长交延长线于点.(1)如图1,求证:;(2)当为直角三角形时,求的长;(3)当为的中点,求的最小值.26.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.

参考答案一、选择题(每题4分,共48分)1、B【解析】

结合中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,本选项错误;

B、是中心对称图形,本选项正确;

C、不是中心对称图形,本选项错误;

D、不是中心对称图形,本选项错误.

故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、A【解析】

连接BD、ND,由勾股定理得可得BD=4,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.【详解】连接BD、ND,由勾股定理得,BD==4,∵点E、F分别为DM、MN的中点,∴EF=DN,当DN最长时,EF长度的最大,∴当点N与点B重合时,DN最长,∴EF长度的最大值为BD=2,故选A.【点睛】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.3、B【解析】

先分别求出两个小数的平方和,再求出大数的平方,看看是否相等即可.【详解】解:∵22+32≠42,∴此时三角形不是直角三角形,故①错误;∵52+122=132,∴此时三角形是直角三角形,故②正确;∵∴此时三角形是直角三角形,故③正确;∵(m2﹣n2)2+(2mn)2=(m2+n2)2,∴此时三角形是直角三角形,故④正确;即正确的有3个,故选:B.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.4、D【解析】

根据二次根式的性质由题意可知,我们在变形时要注意原式的结果应该是个负数,然后根据二次根式的性质化简而得出结果.【详解】解:原式故选:.【点睛】本题考查了二次根式的性质与二次根式的化简,关键要把握住二次根式成立的条件.5、D【解析】

首先根据点坐标求出函数解析式,然后列出不等式,反比例函数自变量不为0,分两类讨论,即可解题.【详解】解:由已知条件,将点代入反比例函数解析式,可得,即函数解析式为∵∴∴当时,解得;当时,解得,即,∴的取值范围是或故答案为D.【点睛】此题主要考查反比例函数和不等式的性质,注意要分类讨论.6、B【解析】

由于x的方程(m-2)x2-2x+1=0有实数解,则根据其判别式即可得到关于m的不等式,解不等式即可求出m的取值范围.但此题要分m=2和m≠2两种情况.【详解】(1)当m=2时,原方程变为-2x+1=0,此方程一定有解;

(2)当m≠2时,原方程是一元二次方程,

∵有实数解,

∴△=4-4(m-2)≥0,

∴m≤1.

所以m的取值范围是m≤1.

故选:B.【点睛】此题考查根的判别式,解题关键在于分两种情况进行讨论,错误的认为原方程只是一元二次方程.7、D【解析】

分类讨论:点P在OA上和点P在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.【详解】如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点P在OB上时.易求G(,1)∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则AP+AD+DG=3+x,CG+BC+BP=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故选:D.【点睛】考查了一次函数的综合题,解题关键是运用数形结合思想.8、B【解析】

根据中心对称图形的概念即可求解【详解】解:A、不是中心对称图形,不符合题意;

B、是中心对称图形,符合题意;

C、不是中心对称图形,不符合题意;

D、不是中心对称图形,不符合题意.

故选:B.【点睛】本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.9、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.10、B【解析】试题分析:根据同一时刻物体的高度和物体的影长成比例可得:1.6:1.2=树高:3.6,则可解得树高为4.8m.考点:相似三角形的应用11、B【解析】

根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求a、b的值,再求a+b的值.【详解】解:∵点A(a,3)与点B(1,b)关于X轴对称,∴a=1,b=-3,∴a+b=-1.故选:B.【点睛】本题考查关于x轴对称的点的坐标,记住关于x轴对称的点,横坐标相同,纵坐标互为相反数是解题的关键.12、D【解析】∵反比例函数y=-5x中,k=∴此函数图象的两个分支在二、四象限,∵x1>x2>0,∴两点都在第四象限,∵在第四象限内y的值随x的增大而增大,∴y2<y1<0.故选D.二、填空题(每题4分,共24分)13、3【解析】

先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【详解】∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,AD=BC=6∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵AD=6,∴OE=AD=3.故答案为:3【点睛】此题考查平行四边形的性质,解题关键在于利用OE是△BCD的中位线14、16或2【解析】

等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,

∴DC=AB=16,AD=BC=1.

分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.

∵四边形ABCD是矩形,

∴AB∥CD,∠A=90°

又GH∥AD,

∴四边形AGHD是平行四边形,又∠A=90°,

∴四边形AGHD是矩形,

∴AG=DH,∠GHD=90°,即B'H⊥CD,

又B'D=B'C,

∴DH=HC=,AG=DH=8,∵AE=3,

∴BE=EB'=AB-AE=16-3=13,

EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′=,

∴B'H=GH×GB'=1-12=6,

在Rt△B'HD中,由勾股定理得:B′D=

综上,DB'的长为16或2.故答案为:16或2【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.15、1【解析】

分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.【详解】∵分式的值为0,∴,∴x=1.故答案是:1.【点睛】考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.16、22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°17、4【解析】

根据平均数的定义求出x的值,再根据极差的定义解答.【详解】1+2+0-1+x+1=1×6,所以x=3,则这组数据的极差=3-(-1)=4,故答案为:4.【点睛】本题考查了算术平均数、极差,熟练掌握算术平均数、极差的概念以及求解方法是解题的关键.18、48°【解析】

根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.【详解】∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,∴AC=DC,∵∠CAB=66°,∴∠CDA=66°,∴∠ACD=180°-∠A-∠CDA=48°,∴∠BCE=∠ACD=48°,故答案为:48°.【点睛】本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.三、解答题(共78分)19、(1)y=20―3x;(2)三种方案,即:方案一:甲种3辆乙种11辆丙种6辆方案二:甲种4辆乙种8辆丙种8辆方案三:甲种5辆乙种5辆丙种10辆(3)方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元。【解析】

(1)由8x+6y+5(20-x-y)=120得y=20-3x(2)由得3≤x≤且x为正整数,故3,4,5车辆安排有三种方案:方案一:甲种车3辆;乙种车11辆;丙种车6辆;方案二:甲种车4辆;乙种车8辆;丙种车8辆;方案三:甲种车5辆;乙种车5辆;丙种车10辆;(3)设此次销售利润为w元.w=8x×12+6(20-x)×16+5[20-x-(20-3x)]×10=1920-92xw随x的增大而减小,由(2):x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元20、(1)y甲=1050+15x(x≥10);y乙=13.5x+1080(x≥10);(2)见解析.【解析】

(1)在甲店购买的付款数=10个足球的总价+(x﹣10)件对抗训练背心的总价,把相关数值代入化简即可;在乙店购买的付款数=10个足球的总价的总价×0.9+x件对抗训练背心×0.9;(2)分别根据y甲=y乙时,y甲>y乙时,y甲<y乙时列出对应式子求解即可.【详解】(1)y甲=120×10+15(x﹣10)=1050+15x(x≥10);y乙=120×0.9×10+15×0.9x=13.5x+1080(x≥10);(2)y甲=y乙时,1050+15x=13.5x+1080,解得:x=20,即当x=20时,到两店一样合算;y甲>y乙时,1050+15x>13.5x+1080,解得:x>20,即当x>20时,到乙店合算;y甲<y乙时,1050+15x<13.5x+1080,解得:10≤x<20,即当10≤x<20时,到甲店合算.【点睛】本题考查了一次函数的应用,解答这类问题时,要先建立函数关系式,然后再分类讨论.21、(1);(2).【解析】

(1)如图,过A作交CB延长线于E,∵AC⊥DB,AE∥DB,∴AC⊥AE,∠AEC=∠DBC=30°,即△EAC为直角三角形,四边形为平行四边形,根据勾股定理求解;(2)记梯形ABCD的面积为S,过A作AF⊥BC于F,则△AFE为直角三角形,求出梯形的高AF,根据梯形面积公式即可求解.【详解】解;(l)如图,过作交延长线于,∵,.∴,,∴,即为直角三角形,∴,∴.∵且.∴四边形为平行四边形.∴;(2)记梯形的面积为,过作于,则为直角三角形.∵∴,即梯形的高,∵四边形为平行四边形,∴..【点睛】本题考查了梯形及勾股定理,难度较大,关键是巧妙地构造辅助线进行求解.22、详见解析【解析】

由角平分线和平行线的性质先证出,,从而有,得到四边形是平行四边形,又因为,所以四边形是菱形.【详解】证明:∵平分,∴,∵,∴,∴,∴,同理.∴,∵,∴且,∴四边形是平行四边形,∵,∴四边形是菱形.【点睛】本题考查了菱形,熟练掌握菱形的判定方法是解题的关键.23、解:(1)如图1、2,画一个即可:(2)如图3、4,画一个即可:【解析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可.(2)根据网格结构,作出BD=AB或AB=AD,连接即可.24、证明见解析.【解析】

由题意易得,EF与BC平行且相等,即可证明四边形BCFE是平行四边形【详解】证明:∵D、E分别为AB、AC中点,∴DE=BC且DE//BC∵EF//BC∴2DE=BC=EF∴BC=EF∴四边形BCFE为平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于判定定理25、(1)详见解析;(2)当为直角三角形时,的长是或;(3).【解析】

(1)先根据菱形的性质证,再证,由全等的性质可得,进而得出结论;(2)分以下两种情况讨论:①,②;(3)过作于,过作于,当三点在同一直线上且时的值最小,即为的长.【详解】解:(1)四边形是菱形,,,.在和中,,,.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论