山东省淄博市临淄区金山中学2024年八年级下册数学期末复习检测试题含解析_第1页
山东省淄博市临淄区金山中学2024年八年级下册数学期末复习检测试题含解析_第2页
山东省淄博市临淄区金山中学2024年八年级下册数学期末复习检测试题含解析_第3页
山东省淄博市临淄区金山中学2024年八年级下册数学期末复习检测试题含解析_第4页
山东省淄博市临淄区金山中学2024年八年级下册数学期末复习检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市临淄区金山中学2024年八年级下册数学期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列各组数中,不能构成直角三角形的是()A.a=1,b=,c= B.a=5,b=12,c=13 C.a=1,b=,c= D.a=1,b=1,c=22.以下列各组数为边长,能构成直角三角形的是()A. B. C. D.3.如图,在平面直角坐标系中,点A、B的坐标分别是(4,0)、(0,3),点O'在直线y=2x(x≥0)上,将△AOB沿射线OO'方向平移后得到△A'O'B’.若点O'的横坐标为2,则点A'的坐标为()A.(4,4) B.(5,4) C.(6,4) D.(7,4)4.已知直线经过点,则直线的图象不经过第几象限()A.一 B.二 C.三 D.四5.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2 B.cm2 C.cm2 D.cm26.若,则下列式子成立的是()A. B. C. D.7.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分 D.CD平分∠ACB8.如图,在ΔABC中,分别以点A,C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若AB=3,BC=4,则ΔABDA.7 B.8 C.9 D.109.小宇同学投擦10次实心球的成绩如表所示:成绩(m)11.811.91212.112.2频数22231由上表可知小宇同学投掷10次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m10.在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是().A.6 B.7 C.8 D.911.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是(

)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD12.已知不等式ax+b>0的解集是x<-2,则函数y=ax+b的图象可能是()A. B.C. D.二、填空题(每题4分,共24分)13.直线与直线平行,且经过,则直线的解析式为:__________.14.如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________15.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1000米,甲超出乙150米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点还有_____米.16.如图,中,D是AB的中点,则CD=__________.17.已知一次函数y=2x+b,当x=3时,y=10,那么这个一次函数在y轴上的交点坐标为________.18.如图,在菱形OABC中,点B在x轴上,点A的坐标为,则点C的坐标为______.三、解答题(共78分)19.(8分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.20.(8分)在今年“绿色清明,文明祭祀”活动中,某花店用元购进若干菊花,很快售完,接着又用元购进第二批菊花,已知第二批所购进菊花的数量是第一批所购进菊花数量的倍,且每朵菊花的进价比第一批每朵菊花的进价多元.(1)求第一批每朵瓶菊花的进价是多少元?(2)若第一批每朵菊花按元售价销售,要使总利润不低于元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?21.(8分)如图,直线y=-x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=-x+10在第一象限内的一个动点.(1)求△OPA的面积S与x的函数解析式,并写出自变量x的取值范围;(2)过点P作PE⊥x轴于点E,作PF⊥y轴于点F,连接EF,是否存在一点P使得EF的长最小,若存在,求出EF的最小值;若不存在,请说明理由.22.(10分)已知,正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线,分别交AB、CD于点M、N.(1)如图,求证:;(2)如图,当点F为AE中点时,连接正方形的对角线BD,MN与BD交于点G,连接BF,求证:;(3)如图,在(2)的条件下,若,,求BM的长度.23.(10分)在学校组织的“学习强国”阅读知识竞赛中,每班参加比赛的人数相同,成绩分为四个等级,其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:(1)在本次竞赛中,班级及以上的人数有多少?(2)请你将下面的表格补充完整:平均数(分)中位数(分)众数(分)级及以上人数班班24.(10分)(1)分解因式:(2)解方程:25.(12分)分别按下列要求解答:(1)将先向左平移个单位,再下移个单位,经过两次变换得到,画出,点的坐标为__________.(2)将绕顺时针旋转度得到,画出,则点坐标为__________.(3)在(2)的条件下,求移动的路径长.26.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A、∵12+()2=()2,∴能构成直角三角形,不符合题意;B、∵52+122=132,,∴能构成直角三角形,不符合题意;C、∵12+32=()2,∴能构成直角三角形,不符合题意;D、∵12+12≠22,∴不能构成直角三角形,符合题意,故选D.【点睛】本题考查的是用勾股定理的逆定理判断三角形的形状,通常是看较小的两边的平方和是否等于最长边的平方,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.2、C【解析】

欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【详解】解:A、∵12+()2≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;

B、∵22+22≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵12+()2=()2,∴此组数据能作为直角三角形的三边长,故本选项正确;D、∵42+52≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误.故选:C.【点睛】此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.3、C【解析】

利用一次函数图象上点的坐标特征可得出点O′的坐标,再利用平移的性质结合点A的坐标可得出点A′的坐标,即可解答.【详解】解:当x=2时,y=2x=4,

∴点O′的坐标为(2,4).

∵点A的坐标为(4,0),

∴点A′的坐标为(4+2,0+4),即(6,4).

故选:C.【点睛】本题考查了一次函数图象上点的坐标特征以及坐标与图形的变化-平移,利用一次函数图象上点的坐标特征求出点O′的坐标是解题的关键.4、B【解析】

把点p代入求出b值,再观察k>0,b<0,根据一次函数图象与k,b的关系得出答案.【详解】因为直线经过点,所以b=-3,然后把b=-3代入,得直线经过一、三、四象限,所以直线的图象不经过第二象限.故选:B【点睛】本题考查一次函数y=kx=b(k≠0)图象与k,b的关系(1)图象是过点(-,0),(0,b)的一条直线(2)当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;当k<0,b>0时,图象过一、二、四象限;当k<0,b<0时,图像过二、三、四象限.5、B【解析】试题分析:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的.∴平行四边形AOC1B的面积=S.∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的.∴平行四边形AO1C2B的面积=×S=.…,依此类推,平行四边形AO4C5B的面积=.故选B.6、B【解析】

由,设x=2k,y=3k,然后将其代入各式,化简求值即可得到答案【详解】因为,设x=2k,y=3k∴,故A错,故B对,故C错,故D错选B【点睛】本题考查比例的性质,属于简单题,解题关键在于掌握由,设x=2k,y=3k的解题方法7、A【解析】

由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.【详解】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB是CD的垂直平分线.即AB垂直平分CD.故选:A.【点睛】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.8、A【解析】

利用基本作图得到MN垂直平分AC,如图,则DA=DC,然后利用等线段代换得到△ABD的周长=AB+BC.【详解】解:由作法得MN垂直平分AC,如图,

∴DA=DC,

∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=3+4=1.

故选:A.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.9、D【解析】

根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:由上表可知小宇同学投掷10次实心球成绩的众数是12.1m,中位数是=12(m),故选:D.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10、C【解析】

本题直接根据勾股定理求解即可.【详解】由勾股定理的变形公式可得:另一直角边长==1.故选C.【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.11、D【解析】

四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,

∴四边形ABCD是矩形,

故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12、A【解析】

根据一次函数与一元一次不等式的关系,得到当x<-2时,直线y=ax+b的图象在x轴上方,然后对各选项分别进行判断.【详解】解:∵不等式ax+b>0的解集是x<-2,∴当x<-2时,函数y=ax+b的函数值为正数,即直线y=ax+b的图象在x轴上方.故选:A.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(每题4分,共24分)13、【解析】

由直线与直线平行,可知k=1,然后把代入中即可求解.【详解】∵直线与直线平行,∴k=1,把代入,得1+b=4,∴b=1,∴.故答案为:.【点睛】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.14、【解析】

首先写出AB的长,再写出AE的长,再写出EF的长,从而来寻找规律,写出第n个正方形的长,再计算面积即可.【详解】根据题意可得AB=1,则正方形ABCD的面积为1AE=,则正方形AEBO1面积为EF=,则正方形EFBO2面积为因此可得第n个正方形面积为故答案为【点睛】本题主要考查正方形的性质,关键在于根据图形写出规律,应当熟练掌握.15、50【解析】

乙从开始一直到终点,行1000米用时200秒,因此乙的速度为1000÷200=5米/秒,甲停下来,乙又走150÷5=30秒才与甲第一次会和,第一次会和前甲、乙共同行使150-30=120秒,从起点到第一次会和点的距离为5×150=750米,因此甲的速度为750÷120=6.25米/秒,甲行完全程的时间为1000÷6.25=160秒,甲到终点时乙行驶时间为160+30=190秒,因此乙距终点还剩200-190=10秒的路程,即10×5=50米.【详解】乙的速度为:1000÷200=5米/秒,从起点到第一次会和点距离为5×150=750米,甲停下来到乙到会和点时间150÷5=30秒,之前行驶时间150﹣30=120秒,甲的速度为750÷120=6.25米/秒,甲到终点时乙行驶时间1000÷6.25+30=190秒,还剩10秒路程,即10×5=50米,故答案为50米.【点睛】考查函数图象的意义,将行程类实际问题和图象联系起来,理清速度、时间、路程之间的关系是解决问题关键.16、6.1【解析】

首先根据勾股定理求得AB=13,然后由“斜边上的中线等于斜边的一半”来求CD的长度.【详解】∵Rt△ABC中,,∴AB===13,∵D为AB的中点,∴CD=AB=6.1.故答案为:6.1.【点睛】本题考查了勾股定理和直角三角形斜边上的中线.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.17、(0,4)【解析】解:∵在一次函数y=2x+b中,当x=3时,y=10,∴6+b=10,解得:b=4,∴一次函数的解析式为y=2x+4,∴当x=0时,y=4,∴这个一次函数在y轴上的交点坐标为(0,4).故答案为:(0,4).点睛:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18、【解析】

根据轴对称图形的性质即可解决问题.【详解】四边形OABC是菱形,、C关于直线OB对称,,,故答案为.【点睛】本题考查菱形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握菱形的性质,利用菱形是轴对称图形解决问题.三、解答题(共78分)19、(1)手机支付金额y(元)与骑行时间x(时)的函数关系式是y=;(2)当x=2时,李老师选择两种支付方式一样;当x>2时,会员卡支付比较合算;当0<x<2时,李老师选择手机支付比较合算.【解析】试题分析:(1)由图可知,“手机支付”的函数图象过点(0.5,0)和点(1,0.5),由此即可由“待定系数法”求得对应的函数解析式;(2)先用“待定系数法”求得“会员支付”的函数解析式,结合(1)中所得函数解析式组成方程组,即可求得两个函数图象的交点坐标,由交点坐标结合图象即可得到本题答案;试题解析:(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得:,解得:,∴手机支付金额y(元)与骑行时间x(时)的函数解析式为:;(2)由题意和图象可设会员支付y(元)与骑行时间x(时)的函数解析式为:,由图可得:,由可得:,∴图中两函数图象的交点坐标为(2,1.5),又∵,∴结合图象可得:当时,李老师用“手机支付”更合算;当时,李老师选择两种支付分式花费一样多;当时,李老师选择“会员支付”更合算.点睛:本题是一道一次函数的实际问题,解题时有两个要点:(1)由图中所得信息,求出两个函数的解析式;(2)由两函数的解析式组成方程组求得两函数图象的交点坐标,结合两函数图象的位置关系即可得到第2问的答案.20、(1)第一批每朵菊花的进价是元;(2)第二批每朵菊花的售价至少是元.【解析】

(1)设第一批每朵菊花的进价是x元,则第一批每朵菊花的进价是(x+1)元,根据数量=总价÷单价结合第二批所购菊花的数量是第一批所购菊花数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设第二批每朵菊花的售价是y元,根据总利润=每朵菊花的利润×销售数量结合总利润不低于1500元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第一批每朵菊花的进价是元,则第二批每朵菊花的进价是元,依题意得:解得:,经检验,是原方程的解,且符合题意.答:第一批每朵菊花的进价是元.(2)设第二批每朵菊花的售价是元,依题意,得:,解得:.答:第二批每朵菊花的售价至少是元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.21、(1)S=40-4x(0<x<10);(2)存在点P使得EF的长最小,最小值为5【解析】试题分析:(1)利用三角形面积公式,得到S△OPA面积,得到S和x的关系.(2)四边形OEPF为矩形,OP垂直于BC时,OP最小,EF也最小.试题解析:解:(1)S△OPA=OA·y=×8×(-x+10)=40-4x.∴S=40-4x(0<x<10).(2)存在点P使得EF的长最小,∵四边形OEPF为矩形,∴EF=OP,∴OP⊥BC时,OP最小,即EF最小.∵B(10,0),C(0,0),∴OB=OC=10,BC=10..∴OP==5..∴EF的最小值为5.22、(1)见解析;(2)见解析;(3).【解析】

(1)由正方形的性质得出∠B=90°,得出∠BAE+∠AEB=90°,由垂直的性质得出∠BAE+∠AMN=90°,即可得出结论;(2)连接AG、EG、CG,证明△ABG≌△CBG得出AG=CG,∠GAB=∠GCB,证出EG=CG,由等腰三角形的性质得出∠GEC=∠GCE,证出∠AGE=90°,由直角三角形斜边上的中线性质得出BF=AE,FG=AE,即可得出结论;(3)过G作交AD于点P,交BC于点Q,证明DP=PG=2,连接ME,证明MN是AE的垂直平分线,得,,再证明得,得,进而得,中,由勾股定理得,代入相关数据,从而得出结论.【详解】(1)(1)证明:∵四边形ABCD是正方形,∴∠B=90°,∴∠BAE+∠AEB=90°,∵MN⊥AE于F,∴∠BAE+∠AMN=90°,∴∠AEB=∠AMN;(2)证明:连接AG、EG、CG,∵四边形ABCD是正方形,∴AB=BC,∠ABG=∠CBG=45°,∠ABE=90°,在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴AG=CG,∠GAB=∠GCB,∵MN⊥AE于F,F为AE中点,∴AG=EG,∴EG=CG,∴∠GEC=∠GCE,∴∠GAB=∠GEC,∵∠GEB+∠GEC=180°,∴∠GEB+∠GAB=180°,∵四边形ABEG的内角和为360°,∠ABE=90°,∴∠AGE=90°,在Rt△ABE

和Rt△AGE中,AE为斜边,F为AE的中点,∴BF=AE,FG=AE,∴BF=FG;(3)过G作交AD于点P,交BC于点Q,则,,中,,,∴,∴∵,∴,∴即连接ME∵于F,F为AE的中点,∴MN是AE的垂直平分线∴,由(2)知,,∴,又,∴,∴,∴,又,∴∴∴∵∴四边形PDCQ为矩形∴设∵E是BC中点∴∴∴即∴∴设∴中,由勾股定理得∴解得∴【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、直角三角形斜边上的中线性质、勾股定理等知识;本题综合性强,有一定难度.23、(1)21;(2)见详解【解析】

(1)先求出901班总人数,再求902班成绩在C级以上(包括C级)的人数;(2)由中位数和众数的定义解题.【详解】解:(1)901班人数有:6+12+2+5=25(人),∵每班参加比赛的人数相同,∴902班有25人,∴C级以上(包括C级)的人数=25×(44%+4%+36%)=21(人),(2)901班成绩的众数为90分,902班A级学生=25×44%=11,B级学生=25×4%=1,C级学生=25×36%=9,D级学生=25×16%=4,902班中位数为C级学生,即80分,补全表格如下:平均数(分)中位数(分)众数(分)B级及以上人数901班87.6909018902班87.68010012【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了中位数、众数的求法.24、(1);(2)无解【解析】

(1)先提公因式a,然后利用平方差公式进行因式分解即可;(2)先找到最简公分母,然后通过去分母,化简计算,求出方程的解,最后还要进行检验即可.【详解】解:(1)==;(2)经检验,时,,∴原方程无解.【点睛】本题考查了因式分解和解分式方程,解题的关键是熟练掌握因式分解的方法和解分式方程的步

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论