版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市津南区2024届数学八年级下册期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列二次根式中,属于最简二次根式的是(
)A. B. C. D.2.下列式子没有意义的是()A. B. C. D.3.当x=3时,函数y=-2x+1的值是()A.3 B.-5 C.7 D.54.如图,已知正比例函数与一次函数的图象交于点.下面有四个结论:①;②;③当时,;④当时,.其中正确的是()A.①② B.②④ C.③④ D.①③5.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部分,则直线DE的表达式是()A.y=x-2 B.y=2x-4 C.y=x-1 D.y=3x-66.直角三角形的两直角边长分别为6和8,则斜边上的中线长是()A.10 B.2.5 C.5 D.87.下列计算错误的是()A.÷=3 B.=5C.2+=2 D.2•=28.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线相等的平行四边形是矩形9.如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A. B. C. D.10.下列命题是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角线相等的菱形是正方形C.对角线互相垂直且相等的四边形是正方形 D.对角线相等的四边形是矩形11.抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.12.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起销售,若要想销售收入保持不变,则售价大概应定为每千克()A.7元 B.6.8元 C.7.5元 D.8.6元二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=_____,对角线AC的长为_____.14.若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,﹣3),则直线的函数表达式是_________.15.把多项式n(n﹣2)+m(2﹣n)分解因式的结果是_____.16.已知点A(),B()是一次函数图象上的两点,当时,__.(填“>”、“=”或“<”)17.不等式组的解集是,那么的取值范围是__________.18.如图,有公共顶点A、B的正五边形和正六边形,连接AC交正六边形于点D,则∠ADE的度数为___.三、解答题(共78分)19.(8分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.20.(8分)如图,利用两面靠墙(墙足够长),用总长度37米的篱笆(图中实线部分)围成一个矩形鸡舍ABCD,且中间共留三个1米的小门,设篱笆BC长为x米.(1)AB=_____米.(用含x的代数式表示)(2)若矩形鸡舍ABCD面积为150平方米,求篱笆BC的长.(3)矩形鸡舍ABCD面积是否有可能达到210平方米?若有可能,求出相应x的值;若不可能,则说明理由.21.(8分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.22.(10分)在同一坐标系中,画出函数与的图像,观察图像写出当时,的取值范围.23.(10分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:(1)求本次抽样调查的人数;(2)请补全两幅统计图;(3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.24.(10分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.25.(12分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫做格点.(1)以格点为顶点画,使三这长分别为;(2)若的三边长分别为m、n、d,满足,求三边长,若能画出以格点为顶点的三角形,请画出该格点三角形.26.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为、,点D是OA的中点,点P在BC边上运动,当是等腰三角形时,点Р的坐标为_______________.
参考答案一、选择题(每题4分,共48分)1、C【解析】
满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A、=,故A不是;B、=,故B不是;C、,是;D、=,故D不是.故选C【点睛】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.2、A【解析】试题分析:A.没有意义,故A符合题意;B.有意义,故B不符合题意;C.有意义,故C不符合题意;D.有意义,故D不符合题意;故选A.考点:二次根式有意义的条件.3、B【解析】
把x=3代入解析式进行计算即可得.【详解】当x=3时,y=-2x+1=-2×3+1=-5,故选B.【点睛】本题考查了求函数值,正确把握求解方法是解题的关键.4、D【解析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.【详解】如图所示:
∵y1=ax,经过第一、三象限,
∴a>0,故①正确;
∵与y轴交在正半轴,
∴b>0,
故②错误;
∵正比例函数y1=ax,经过原点,
∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;
当x>2时,y1>y2,故④错误.
故选:D.【点睛】此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.5、A【解析】
过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】解:∵点B的坐标为(8,4),∴平行四边形的对称中心坐标为(4,1),设直线DE的函数解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x-1.故选:A.【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.6、C【解析】
已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.【详解】已知直角三角形的两直角边为6、8,
则斜边长为=10,
故斜边的中线长为×10=5,
故选:C.【点睛】考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.7、C【解析】
根据二次根式的运算法则及二次根式的性质逐一计算即可判断.【详解】解:A、÷=3÷=3,此选项正确;B、=5,此选项正确;C、2、不能合并,此选项错误,符合题意;D、2•=2,此选项正确;故选C.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及二次根式的性质.8、B【解析】
根据正方形,平行四边形,矩形,菱形的判定定理判断即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;B、对角线互相垂直且平分的四边形是菱形,故错误;C、对角线相等的菱形是正方形,故正确;D、对角线相等的平行四边形是矩形,故正确;故选:B.【点睛】本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.9、D【解析】
根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.10、B【解析】
根据菱形的判定方法、正方形的判定方法以及矩形的判定方法对各选项加以判断即可.【详解】A:对角线互相垂直的平行四边形是菱形,故选项错误,为假命题;B:对角线相等的菱形是正方形,故选项正确,为真命题;C:对角线互相垂直且相等的平行四边形是正方形,故选项错误,为假命题;D:对角线相等的平行四边形是矩形,故选项错误,为假命题;故选:B.【点睛】本题主要考查了菱形、正方形以及矩形的判定方法,熟练掌握相关概念是解题关键.11、A【解析】
试题分析:A、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故A正确;B、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故B错误;C、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故C错误;D、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故D错误;正确的只有A.故选A.考点:1.二次函数的图象;2.一次函数的图象.12、B【解析】
根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【详解】解:售价应定为:(元);故选:B【点睛】本题考查的是加权平均数的求法,本题易出现的错误是对加权平均数的理解不正确,而求6,7,8这三个数的平均数.二、填空题(每题4分,共24分)13、120°10【解析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AD∥BC,∵E是AB的中点,且DE⊥AB,∴AE=AD,∴sin∠ADE=,∴∠ADE=30°,∴∠DAE=60°,∵AD∥BC,∴∠ABC=180°−60°=120°;连接BD,交AC于点O,在菱形ABCD中,∠DAE=60°,∴∠CAE=30°,AB=10,∴OB=5,根据勾股定理可得:AO==,即AC=.故答案为:120°;.点睛:本题考查了菱形的性质、线段垂直平分线的性质、勾股定理等知识点,熟练掌握菱形的性质是解题的关键.由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.14、y=2x﹣1.【解析】
根据两条直线平行问题得到k=2,然后把点(0,﹣1)代入y=2x+b可求出b的值,从而可确定所求直线解析式.【详解】∵直线y=kx+b与直线y=2x平行,∴k=2,把点(0,﹣1)代入y=2x+b得b=﹣1,∴所求直线解析式为y=2x﹣1.故答案为:y=2x﹣1.【点睛】考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.15、(n﹣2)(n﹣m).【解析】
用提取公因式法分解因式即可.【详解】n(n﹣2)+m(2﹣n)=n(n﹣2)-m(n-2)=(n﹣2)(n﹣m).故答案为(n﹣2)(n﹣m).【点睛】本题考查了用提公因式法进行因式分解;一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、<【解析】试题解析:∵一次函数y=-1x+5中k=-1<0,∴该一次函数y随x的增大而减小,∵x1>x1,∴y1<y1.17、m≤4【解析】试题解析:由①得:x>4.当x>m时的解集是x>4,根据同大取大,所以故答案为18、84°.【解析】
据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【详解】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故答案为84°.【点睛】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.三、解答题(共78分)19、(1)见解析;(2)见解析.【解析】
(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.20、(1)40-2x(2)15米或5米(3)不可能【解析】
(1)直接由图可知AB=总长度+3-2x.(2)由题意得:(40﹣2x)x=150,解得即可.(3)由题意判断(40﹣2x)x=210是否有解即可.【详解】(1)∵中间共留三个1米的小门,∴篱笆总长要增加3米,篱笆变为40米,设篱笆BC长为x米,∴AB=40﹣2x(米)故答案为40﹣2x.(2)设篱笆BC长为x米.由题意得:(40﹣2x)x=150解得:x=15,x=5∴篱笆BC的长为:15米或5米.(3)不可能.∵假设矩形鸡舍ABCD面积是210平方米,由题意得:(40﹣2x)x=210,整理得:x2﹣20x+105=0,此方程中△<0,∴方程无解.故矩形鸡舍ABCD面积不可能达到210平方米.【点睛】本题考查的知识点是一元二次方程的应用,解题的关键是熟练的掌握一元二次方程的应用.21、1.【解析】
先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【详解】解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上
∴BC'=AB=3,CF=C'F
在Rt△BC'F中,C'F2=BF2+C'B2,
∴CF2=(9-CF)2+9
∴CF=5
∴BF=1.【点睛】本题考查折叠问题及勾股定理的应用,同时也考查了列方程求解的能力.解题的关键是找出线段的关系.22、画图见解析,当时,的取值范围为.【解析】分析:(1)利用两点法作出一次函数的图象,根据图象直接确定自变量的取值范围即可.详解:建立平面直角坐标系过画该直线(如图)过画该直线.(如图)∵解得∴两直线的交点为(如图)根据图象当时,的取值范围为.点睛:本题考查了一次函数的图象,作一次函数的图象时,可以利用两点法作图.23、(1)100(人);(2)详见解析;(3)1050人.【解析】
(1)用A类的人数除以它所占的百分比,即可得本次抽样调查的人数;(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;(3)用3000乘以样本中观看“中国诗词大会”节目较喜欢的学生人数所占的百分比,即可解答.【详解】解:(1)本次抽样调查的人数为:20÷20%=100(人);(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,如图所示:(3)3000×35%=1050(人).观看“中国诗词大会”节目较喜欢的学生人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.24、(1)详见解析;(2)【解析】
(1)由∠EAF=∠GAC.可得∠EAG=∠DAF且AG⊥BC,AM⊥DE可得∠ADF=∠B,且∠EAD=∠BAC可证:△ADE∽△ABC;(2)利用相似的性质得出,AB=BE+AE=4+3=7,即可解答【详解】(1)证明:AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∴∠AEF+∠EAF=90°,∠GAC+∠AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年智能家电维修与售后服务合同3篇
- 小班绿豆芽主题课程设计
- 招投标课程设计过程简述
- 微课程设计与制作观潮
- 石油化工储罐课程设计
- 2024年土地承包权流转合同协议书3篇
- 2024年企业间贷款合同范本3篇
- 2024年汽车维修工具设备采购安装合同
- 2024年水泵设备进出口贸易与代理承包合同3篇
- 2024年某城市轨道交通建设咨询服务合同
- 2024年度土地经营权流转与开发合作合同6篇
- 2023-2024学年广东省深圳市福田区七年级(上)期末历史试卷
- 大学生《思想道德与法治》考试复习题及答案
- 云南省曲靖市2023-2024学年四年级上学期期末考试科学试卷
- 热力试验测点安装及布置规范
- 群塔作业方案(图文并茂,十分详细)
- 八滩镇第二中心小学信访维稳工作台账
- 国家开放大学电大本科《管理案例分析》期末试题及答案(试卷号:1304)
- 布洛芬工艺规程
- 金光修持法(含咒诀指印、步骤、利益说明)
- 最新公司员工职称评聘办法及职称聘任考核规定(最新整理)
评论
0/150
提交评论