2024年宿州市重点中学数学八年级下册期末联考试题含解析_第1页
2024年宿州市重点中学数学八年级下册期末联考试题含解析_第2页
2024年宿州市重点中学数学八年级下册期末联考试题含解析_第3页
2024年宿州市重点中学数学八年级下册期末联考试题含解析_第4页
2024年宿州市重点中学数学八年级下册期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年宿州市重点中学数学八年级下册期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是()A. B. C. D.2.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位3.如图是一个平行四边形,要在上面画两条相交的直线,把这个平行四边形分成的四部分面积相等,不同的画法有()A.1种 B.2种 C.4种 D.无数种4.如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是()A.①②③ B.①② C.①③ D.②③5.分式-x+y-x-y可变形为(A.-x+yx-y B.-x-yx+y C.x+y6.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x

B.y=5x

C.y=100x

D.y=0.05x+1007.如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,取A2C、B2C的中点A3、B3,依次取下去…利用这一图形,能直观地计算出()A.1 B. C. D.8.若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.279.若a>b,则下列式子正确的是()A.a+2<b+2 B.﹣2a>﹣2b C.a﹣2>b﹣2 D.a10.解分式方程,去分母得()A. B. C. D.11.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁12.甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲,乙的波动大小一样 D.甲,乙的波动大小无法确定二、填空题(每题4分,共24分)13.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为____元.14.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积为2,则k的值为______________.15.若n边形的内角和是它的外角和的2倍,则n=.16.已知,则___________.17.如图,Rt△ABC中,∠BAC=90°,AB=AC,将△ABC绕点C顺时针旋转40°,得到△,与AB相交于点D,连接,则∠的度数是________.18.在一次数学单元考试中,某小组6名同学的成绩(单位:分)分别是:65,80,70,90,100,70。则这组数据的中位数分别是_________________________分。三、解答题(共78分)19.(8分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:(1)求图中的值,并求出所在直线方程;(2)组委会在距离起点2.1千米处设立一个拍摄点,小明从第一次过点到第二次经过点所用的时间为68分钟①求所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?20.(8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.21.(8分)如图,将△ABC绕点A顺时针旋转得到△ADE(点B,C的对应点分别是D,E),当点E在BC边上时,连接BD,若∠ABC=30°,∠BDE=10°,求∠EAC.22.(10分)作平行四边形ABCD的高CE,B是AE的中点,如图.(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.(2)如果BE:CE=1:,BC=3cm,求AB.23.(10分)若关于的一元二次方程有实数根,.(1)求实数的取值范围;(2)设,求的最小值.24.(10分)关于的方程,其中分别是的三边长.(1)若方程有两个相等的实数根,试判断的形状,并说明理由;(2)若为等边三角形,试求出这个方程的解.25.(12分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)请直接写出不等式kx+b﹣3x>0的解集.(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.26.如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)当∠A=50°,∠BOD=100°时,判断四边形BECD的形状,并说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:当点E在BC上运动时,三角形的面积不断增大,最大面积===1;当点E在DC上运动时,三角形的面积为定值1.当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为2.故选B.考点:动点问题的函数图象.2、D【解析】

过B作射线,在上截取,则四边形是平行四边形,过B作于H.【详解】,.,,,则四边形是菱形.因此平移点A到点C,向右平移1个单位,再向上平移1个单位得到.故选D.【点睛】本题考查的知识点是四边形的应用,解题关键是划对辅助线进行作答.3、D【解析】

利用平行四边形为中心对称图形进行判断.【详解】解:∵平行四边形为中心对称图形,∴经过平行四边形的对称中心的任意一条直线可把这个平行四边形分成的四部分面积相等.故选:D.【点睛】本题考查的是中心对称,掌握平行四边形是中心对称图形以及中心对称图形的性质是解题的关键.4、A【解析】

由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.【详解】解:①∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG.故正确;②∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形.故正确;③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ.故正确.综上所述,正确的结论是①②③.故选A.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.5、D【解析】

根据分式的基本性质进行判断.【详解】A.分子、分母同时除以−1,则原式=x-yx+yB.分子、分母同时除以−1,则原式=x-yx+yC.分子、分母同时除以−1,则原式=x-yx+yD.分子、分母同时除以−1,则原式=x-yx+y,故本选项正确故选:D.【点睛】此题考查分式的基本性质,解题关键在于掌握运算法则.6、B【解析】试题分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.因此,y=100×0.05x,即y=5x.故选B.考点:函数关系式.7、C【解析】

对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【详解】解:∵A1、B1分别是AC、BC两边的中点,且△ABC的面积为1,∴△A1B1C的面积为∴四边形A1ABB1的面积=△ABC的面积-△A1B1C的面积

;∴四边形A2A1B1B2的面积=的面积-的面积

…∴第n个四边形的面积

∴故答案为:C【点睛】本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.8、D【解析】依题意得.∴x+y=27.故选D.9、C【解析】

依据不等式的基本性质进行判断,即可得出结论.【详解】解:若a>b,则a+2>b+2,故A选项错误;若a>b,则-2a<-2b,故B选项错误;若a>b,则a-2>b-2,故C选项正确;若a>b,则12a>1故选:C.【点睛】本题主要考查了不等式的基本性质,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.10、A【解析】

分式方程两边乘以(x-1)去分母即可得到结果.【详解】解:方程两边乘以(x-1)去分母得:.

故选:A.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11、A【解析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、A【解析】

根据方差的定义,方差越小数据越稳定,故可选出正确选项.【详解】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(每题4分,共24分)13、1【解析】

根据题意算出5种方案的钱数,故可求解.【详解】解:连续6天不限次数乘坐地铁有5种方案方案①:买一日票6张,费用20×6=120(元)方案②:买二日票3张:30×3=90(元)方案③:买三日票2张:40×2=1(元)方案④:买一日票1张,五日票1张:20+70=120(元)方案⑤:买七日票1张:90元故方案③费用最低:40×2=1(元)故答案为1.【点睛】此题主要考查有理数运算的应用,解题的关键是根据题意写出各方案的费用.14、1【解析】

设反比例函数的解析式是:y=,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.【详解】设反比例函数的解析式是:y=,设A的点的坐标是(m,n).

则AB=m,OB=n,mn=k.

∵△ABP的面积为2,

∴AB•OB=2,即mn=2

∴mn=1,则k=mn=1.

故答案是:1.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.15、6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=616、【解析】

将二次根式化简代值即可.【详解】解:所以原式.故答案为:【点睛】本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.17、20【解析】

由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴△ABC≌△A'B'C∴AC=A'C,∠ACA′=40°,∠BAC=∠B'A'C=90°∴∠AA'C=70°=∠A'AC∴∠B'A'A=∠B'A'C−∠AA'C=20°.【点睛】本题考查全等三角形的判定与性质,等腰直角三角形,旋转的性质.旋转前后对应线段相等,对应角相等,对应图形全等.在旋转过程中,一定要仔细读题,能理解∠ACA′即为旋转角等于40°,AC和A'C为一组对应线段.18、75【解析】

根据中位数的定义即可求解.【详解】先将数据从小到大排序为65,70,70,80,90,100,故中位数为(70+80)=75【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义.三、解答题(共78分)19、(1);(2)①;②85分钟【解析】

(1)根据路程=速度×时间,再把A点的值代入即可解决问题.(2)①先求出A、B两点坐标即可解决问题.②令s=0,求出x的值即可解决问题.【详解】解:(1)∵从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟,∴千米.∴,设直线的解析式为:,把代入,得,解得,,∴直线的解析式为:;(2)①∵直线解析式为,∴当时,,解得,∵小明从第一次经过C点到第二次经过C点所用的时间为68分钟,∴小明从起点到第二次经过C点所用的时间是,分钟,∴直线经过,,设直线解析式,∴,,解得,,∴直线解析式为.②小明跑完赛程用的时间即为直线与轴交点的横坐标,∴当时,,解得,∴小明跑完赛程用时85分钟.【点睛】此题考查一次函数综合题,解题关键在于列出方程.20、(1)50;1;(2)2;3;15;(3)608人.【解析】

(1)根据条形统计图即可得出样本容量:4+2+12+3+8=50(人);根据扇形统计图得出m的值:;(2)利用平均数、中位数、众数的定义分别求出即可.(3)根据样本中捐款3元的百分比,从而得出该校本次活动捐款金额为3元的学生人数.【详解】解:(1)根据条形图4+2+12+3+8=50(人),

m=30-20-24-2-8=1;故答案为:50;1.(2)∵,∴这组数据的平均数为:2.∵在这组样本数据中,3出现次数最多为2次,∴这组数据的众数为:3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:,(3)∵在50名学生中,捐款金额为3元的学生人数比例为1%,∴由样本数据,估计该校1900名学生中捐款金额为3元的学生人数有1900×1%=608人.∴该校本次活动捐款金额为3元的学生约有608人.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.21、∠EAC=100°.【解析】

由旋转可得,△ABC≌△ADE,进而得出∠ABC=∠ADE=30°,AD=AB,进而得到∠ADB=40°=∠ABD,∠BAD=100°,再根据∠BAC=∠DAE,即可得到∠EAC=∠DAB=100°.【详解】由旋转可得,△ABC≌△ADE,∴∠ABC=∠ADE=30°,AD=AB,∵∠BDE=10°,∴∠ADB=40°=∠ABD,∴∠BAD=100°,又∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠EAC=∠DAB=100°.【点睛】本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.22、(1)BD⊥AE,理由见解析;(2)(cm).【解析】

(1)直接利用平行四边形的性质得出BD∥CE,进而得出答案;(2)直接利用勾股定理得出BE的长,进而得出答案.【详解】解:(1)对,理由:∵ABCD是平行四边形,∴CD∥AB且CD=AB.又B是AE的中点,∴CD∥BE且CD=BE.∴BD∥CE,∵CE⊥AE,∴BD⊥AE;(2)设BE=x,则CE=x,在Rt△BEC中:x2+(x)2=9,解得:x=,故AB=BE=(cm).【点睛】此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.23、(1)k≤−2;(2)t的最小值为−1.【解析】

(1)由一元二次方程存在两实根,可得△≥0,进而求得k的取值范围;

(2)将α+β化为关于k的表达式,根据k的取值范围得出t的取值范围,即可求得的最小值.【详解】(1)∵一元二次方程x2−2(2−k)x+k2+12=0有实数根a,β,∴△≥0,即:1(2−k)2−1(k2+12)≥0,解得:k≤−2;(2)由根与系数的关系得:a+β=−[−2(2−k)]=1−2k,∴==−2,∵k≤−2,∴−2≤<0,∴−1≤−2<−2,∴t的最小值为−1.【点睛】本题主要考查一元二次方程根的判别式以及根与系数的关系,掌握(a≠0),有实数根a,β时,则△≥0,a+β=,aβ=,是解题的关键.24、(1)是直角三角形;理由见解析;(2),.【解析】

(1)根据根的判别式为0,计算出的关系,即可判定;(2)根据题意,将方程进行转化形式,即可得解.【详解】(1)直角三角形根据题意,得即所以是直角三角形(2)根据题意,可得解出【点睛】此题主要考查一元二次方程和三角形的综合应用,熟练运用,即可解题.25、(1)k=-1,b=4;(2)x<1;(3)点D的坐标为D(0,﹣4)或D(0,12).【解析】

(1)用待定系数法求解;(2)kx+b>3x,结合图象求解;(3)先求点B的坐标为(4,0).设点D的坐标为(0,m),直线DB:y=-,过点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论