版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临清、高唐两地2024年数学八年级下册期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列关于一次函数的说法中,错误的是()A.函数图象与轴的交点是B.函数图象自左至右呈下降趋势,随的增大而减小C.当时,D.图象经过第一、二、三象限2.能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等3.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点DC.点M D.点N4.(2011•潼南县)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是() A、y=0.05x B、y=5x C、y=100x D、y=0.05x+1005.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0) B.(8,-8) C.(-8,8) D.(0,16)6.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为()A.(-3,-2) B.(-3,2) C.(-2,3) D.(2,3)7.如图,四边形ABCD是长方形,四边形AEFG是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若∠BCF=30°,CD=4,CF=6,则正方形AEFG的面积为()A.1 B.2 C.3 D.48.关于x的方程x2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC的两边长,则△ABC的腰长为()A.3 B.6 C.6或9 D.3或69.下列各式中,能用完全平方公式分解因式的是()A. B. C. D.10.已知点(-1,y1),(1,y2),(-2,y3)都在直线y=-x上,则y1,y2,y3的大小关系是()A..y1>y2>y3 B.y1<y2<y3 C.y3>y1>y2 D.y3<y1<y2二、填空题(每小题3分,共24分)11.已知,若整数满足,则__________.12.菱形的两条对角线相交于,若,,则菱形的周长是___.13.如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.14.“同旁内角互补,两直线平行”的逆命题是_____________________________.15.在中,,,,则__________.16.将直线y=2x+1向下平移2个单位,所得直线的表达式是__________.17.张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是.18.一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是________.三、解答题(共66分)19.(10分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:土特产种类甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.20.(6分)已知,如图,,求证:.证明:∵∴________________()∴________________()又∵∴________________()∴()21.(6分)如图,AD是△ABC的角平分线,M是BC的中点,FM∥AD交BA的延长线于点F,交AC于点E.求证:(1)CE=BF.(2)AB+AC=2CE.22.(8分)如图,四边形和四边形都是平行四边形.求证:四边形是平行四边形.23.(8分)正方形ABCD的边长为6,点E、F分别在AB、BC上,将AD、DC分别沿DE、DF折叠,点A、C恰好都落在P处,且.求EF的长;求的面积.24.(8分)在数学拓展课上,老师让同学们探讨特殊四边形的做法:如图,先作线段,作射线(为锐角),过作射线平行于,再作和的平分线分别交和于点和,连接,则四边形为菱形;(1)你认为该作法正确吗?请说明理由.(2)若,并且四边形的面积为,在上取一点,使得.请问图中存在这样的点吗?若存在,则求出的长;若不存在,请说明理由.25.(10分)某校七、八年级各有学生400人,为了解这两个年级普及安全教育的情况,进行了抽样调查,过程如下选择样本,收集数据从七、八年级各随机抽取20名学生,进行安全教育考试,测试成绩(百分制)如下:七年级8579898389986889795999878589978689908977八年级7194879255949878869462999451889794988591分组整理,描述数据(1)按如下频数分布直方图整理、描述这两组样本数据,请补全八年级20名学生安全教育频数分布直方图;(2)两组样本数据的平均数、中位数、众数、优秀率如下表所示,请补充完整;得出结论,说明理由.(3)整体成绩较好的年级为___,理由为___(至少从两个不同的角度说明合理性).26.(10分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).小宇的作业:
解:甲=(9+4+7+4+6)=6,
s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=(9+4+1+4+0)
=3.6
甲、乙两人射箭成绩统计表
第1次
第2次
第3次
第4次
第5次
甲成绩
9
4
7
4
6
乙成绩
7
5
7
a
7
(1)a=________,乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据一次函数的图像与性质即可求解.【详解】A.函数图象与轴的交点是,正确;B.函数图象自左至右呈下降趋势,随的增大而减小,正确C.当时,解得,正确D.图象经过第一、二、四象限,故错误.故选D.【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质.2、D【解析】
根据平行四边形的判定定理进行推导即可.【详解】解:如图所示:若已知一组对边平行,一组对角相等,易推导出另一组对边也平行,两组对边分别平行的四边形是平行四边形.故根据平行四边形的判定,只有D符合条件.故选D.考点:本题考查的是平行四边形的判定点评:解答本题的关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.3、A【解析】试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故选A.考点:位似变换.4、:解:y=100×0.05x,即y=5x.故选B.【解析】:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.5、C【解析】
根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).【详解】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,∴OA4=4,∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);故选:C.【点睛】本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究An的坐标规律是解题的关键.6、A【解析】对于平行四边形MNEF,点N的对称点即为点F,所以点F到X轴的距离为2,到Y轴的距离为1.即点N到X、Y轴的距离分别为2、1,且点N在第三象限,所以点N的坐标为(—1,—2)7、A【解析】
由矩形和正方形的性质得出AD∥EF∥BC,AB=CD=4,∠B=90°,证出四边形EFCH平行四边形,∠BHE=∠BCF=30°,得出EH=CF=6,由含30°角的直角三角形的性质求出BE=3,得出AE的长,即可得出正方形的面积.【详解】∵四边形ABCD是矩形,四边形AEFG是正方形,
∴AD∥EF∥BC,AB=CD=4,∠B=90°,
又∵EH∥FC,
∴四边形EFCH平行四边形,∠BHE=∠BCF=30°,
∴EH=CF=6,
∴BE=EH=3,
∴AE=AB-BE=4-3=1,
∴正方形AEFG的面积=AE2=1;
故选:A.【点睛】本题考查了正方形的性质、矩形的性质、平行四边形的判定与性质、含30°角的直角三角形的性质;熟记性质并求出四边形EFCH平行四边形是解题的关键.8、B【解析】
先把x=1代入方程x2-mx+2m=0求出m得到原方程为x2-9x+18=0,利用因式分解法解方程得到x1=1,x2=6,然后根据等腰三角形三边的关系和等腰三角形的确定等腰△ABC的腰和底边长.【详解】解:把x=1代入方程x2-mx+2m=0得9-1m+2m=0,解得m=9,则原方程化为x2-9x+18=0,(x-1)(x-6)=0,所以x1=1,x2=6,所以等腰△ABC的腰长为6,底边长为1.故选:B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.9、A【解析】分析:完全平方公式是指:,根据公式即可得出答案.详解:.故选A.点睛:本题主要考查的完全平方公式,属于基础题型.理解公式是解决这个问题的关键.10、C【解析】
先根据直线y=-x判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=-x,k=-1<0,∴y随x的增大而减小,又∵-1<-1<1,∴y3>y1>y1.故选:C.【点睛】本题考查的是正比例函数的增减性,即正比例函数y=kx(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.二、填空题(每小题3分,共24分)11、【解析】
先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:1.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出的取值范围是解此题的关键.12、【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为1,故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.13、【解析】
先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.【详解】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,
在Rt△DHC中,DH=,∴EF=DH=.故答案为:.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.14、两直线平行,同旁内角互补【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“同旁内角互补,两直线平行”的条件是同旁内角互补,结论是两直线平行,故其逆命题是两直线平行,同旁内角互补.详解:命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角互补,
故答案为两直线平行,同旁内角互补.点睛:考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15、1【解析】
根据直角三角形中,30°所对的直角边是斜边的一半进行计算.【详解】∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
∴AB=1BC=1.
故答案为:1.【点睛】此题考查直角三角形的性质,解题关键在于掌握30°所对的直角边是斜边的一半.16、【解析】由题意得:平移后的解析式为:y=2x+1-2=2x-1,即.所得直线的表达式是y=2x-1.故答案为y=2x-1.17、1.【解析】
∵100,80,x,1,1,这组数据的众数与平均数相等,∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.∴(100+80+x+1+1)÷5=1,解得,x=1.∵当x=1时,数据为80,1,1,1,100,∴中位数是1.18、【解析】
绿球的个数除以球的总数即为所求的概率.【详解】解:∵一个盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,∴小明摸出一个球是绿球的概率是:.故答案为:【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、(1)y=20―3x;(2)三种方案,即:方案一:甲种3辆乙种11辆丙种6辆方案二:甲种4辆乙种8辆丙种8辆方案三:甲种5辆乙种5辆丙种10辆(3)方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元。【解析】
(1)由8x+6y+5(20-x-y)=120得y=20-3x(2)由得3≤x≤且x为正整数,故3,4,5车辆安排有三种方案:方案一:甲种车3辆;乙种车11辆;丙种车6辆;方案二:甲种车4辆;乙种车8辆;丙种车8辆;方案三:甲种车5辆;乙种车5辆;丙种车10辆;(3)设此次销售利润为w元.w=8x×12+6(20-x)×16+5[20-x-(20-3x)]×10=1920-92xw随x的增大而减小,由(2):x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元20、DE∥AC;内错角相等,两直线平行;;两直线平行,内错角相等;;两直线平行,同位角相等.【解析】
根据平行线的性质和判定,还有等量代换可得.【详解】证明:∵∴___DE∥AC_____(内错角相等,两直线平行)∴________________(两直线平行,内错角相等)又∵∴________________(两直线平行,同位角相等)∴(等量代换)【点睛】考核知识点:平行线的判定和性质.理解好判定和性质是关键.21、(1)见解析;(2)见解析【解析】
(1)延长CA交FM的平行线BG于G点,利用平行线的性质得到BM=CM、CE=GE,从而证得CE=BF;
(2)利用上题证得的EA=FA、CE=BF,进一步得到AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【详解】解:(1)证明:延长CA交FM的平行线BG于G点,
则∠G=∠CAD,∠GBA=∠BAD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴AG=AB,
∵FM∥AD
∴∠F=∠BAD、∠FEA=∠DAC
∵∠BAD=∠DAC,
∴∠F=∠FEA,
∴EA=FA,
∴GE=BF,
∴M为BC边的中点,
∴BM=CM,
∵EM∥GB,
∴CE=GE,
∴CE=BF;
(2)证明:∵EA=FA、CE=BF,
∴AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【点睛】本题考查了三角形的中位线定理,解题的关键是正确地构造辅助线,另外题目中还考查了平行线等分线段定理.22、详见解析【解析】
首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.【详解】∵四边形是平行四边形,∴,∵四边形是平行四边形,∴,∴,∴四边形是平行四边形【点睛】此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.23、(1)5;(2)6.【解析】
(1)设,则,,由勾股定理得得,,求出,可得(2)先求BE,BF,再根据,可得结果.【详解】解:设,则,,由勾股定理得得,,解得,,即,;,,.,,,.【点睛】本题考核知识点:正方形,勾股定理.解题关键点:运用折叠的性质得到边相等.24、(1)作法正确(2)或【解析】
(1)根据作法可以推出,又因为,所以四边形是平行四边形,又,所以四边形是菱形,因此作法正确;(2)作,由面积公式可求出,由菱形的性质可得AD=AB=4,用勾股定理可得,由锐角三角函数得,所以是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新能源配件供需合同3篇
- 尾气处理技术培训3篇
- 工程守约保证书3篇
- 安装合同的劳务3篇
- 房屋买卖合同网签3篇
- 挂车购车条款3篇
- 敬老院租赁合同样本模板3篇
- 招标采购文件样式设计指南解析3篇
- 换热站建设条款3篇
- 舞蹈培训机构副校长合同
- 2023版《中国近现代史纲要》课后习题答案
- 安阳鑫龙煤业(集团)龙山煤业有限责任公司煤矿矿山地质环境保护与土地复垦方案
- 互联网金融(同济大学)智慧树知到期末考试答案2024年
- 大学生职业规划汽车维修技师
- 中考语文复习:谦辞和敬辞+教学设计
- 结构方程模型及测其量方法
- 高一上学期期末教学质量统一检测语文试题(A卷)(解析版)
- 面试答辩述职报告
- 能效评估报告
- 四年级上册数学乘法竖式
- 2024年云南省三校生教育类模拟考试复习题库(必刷800题)
评论
0/150
提交评论