版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市首都师大附中2024届八年级数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18 B.93C.6 D.条件不够,不能确定2.如果平行四边形一边长为12cm,那么两条对角线的长度可以是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.10cm和12cm3.将一元二次方程配方后,原方程可化为(
)A. B. C. D.4.菱形和矩形一定都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线互相平分且相等5.已知一次函数的图象与轴交于点,且随自变量的增大而减小,则关于的不等式的解集是()A. B. C. D.6.一次考试考生约2万名,从中抽取500名考生的成绩进行分析,这个问题的样本是()A.500 B.500名 C.500名考生 D.500名考生的成绩7.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前跑过的路程大于小林前跑过的路程D.小林在跑最后的过程中,与小苏相遇2次8.据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)()A.21℃ B.22℃ C.23℃ D.24℃9.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A. B.C. D.10.如图,在ΔABC中,AC=6,BC=8,AB=10,P是AB边上的动点,PE⊥AC,PF⊥BC,则EF的最小值为()A.125 B.245 C.5二、填空题(每小题3分,共24分)11.若ab,则32a__________32b(用“>”、“”或“<”填空).12.已知﹣=16,+=8,则﹣=________.13.如图,在中,,,,过点作且点在点的右侧.点从点出发沿射线方向以/秒的速度运动,同时点从点出发沿射线方向以/秒的速度运动,在线段上取点,使得,设点的运动时间为秒.当__________秒时,以,,,为顶点的四边形是平行四边形.14.已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照6~7,8~9,10~11,12~13分组,那么频率为0.4的一组是_________.15.阅读后填空:已知:如图,∠A=∠D=90∘,AC=DB,AC、DB相交于点求证:OB=OC.分析:要证OB=OC,可先证∠OCB=∠OBC;要证∠OCB=∠OBC,可先证ΔABC≅ΔDCB;而用______可证ΔABC≅ΔDCB(填SAS或AAS或HL).16.若分式方程1x-3-2=k3-x有增根,则17.若方程的两根,则的值为__________.18.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为______(请将所有正确的序号都填上).三、解答题(共66分)19.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:(1)画出△ABC绕点O逆时针旋转90∘后的△ABC;点B1的坐标为___;(2)在(1)的旋转过程中,点B运动的路径长是___(3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.20.(6分)如图,中,,两点在对角线上,.(1)求证:;(2)当四边形为矩形时,连结、、,求的值.21.(6分)如图,以△ABC的三边为边在BC同侧分别作等边三角形,即△ABD,△BCE,△ACF.(1)四边形ADEF为__________四边形;(2)当△ABC满足条件____________时,四边形ADEF为矩形;(3)当△ABC满足条件____________时,四边形ADEF为菱形;(4)当△ABC满足条件____________时,四边形ADEF不存在.22.(8分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的m的值为,图①中“38号”所在的扇形的圆心角度数为;(2)本次调查获取的样本数据的众数是,中位数是;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?23.(8分)在平面直角坐标系xOy中,一次函数的图象经过点A(2,3)与点B(0,5).(1)求此一次函数的表达式;(2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.24.(8分)(1)计算(2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.解方程解:方程两边乘,得第一步解得第二步检验:当时,.所以,原分式方程的解是第三步小刚的解法从第步开始出现错误,原分式方程正确的解应是.25.(10分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多20元,而用800元购买A种零件的数量和用600元购买B种零件的数量相等(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?26.(10分)已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.(1)求证:∠A=2∠CBD;(2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.(3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.【详解】延长EP交AB于点G,延长DP交AC与点H.∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB=183故选C.【点睛】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.2、B【解析】
根据平行四边形对角线的性质、三角形三边关系定理逐项判断即可得.【详解】如图,设四边形ABCD是平行四边形,边长为,对角线AC、BD相交于点O则A、若,则,不满足三角形的三边关系定理,此项不符题意B、若,则,满足三角形的三边关系定理,此项符合题意C、若,则,不满足三角形的三边关系定理,此项不符题意D、若,则,不满足三角形的三边关系定理,此项不符题意故选:B.【点睛】本题考查了平行四边形的对角线性质、三角形的三边关系定理,掌握理解平行四边形的性质是解题关键.3、C【解析】
根据配方法对进行计算,即可解答本题.【详解】解:∵x2﹣4x+1=0,∴(x﹣2)2﹣4+1=0,∴(x﹣2)2=3,故选:C.【点睛】本题考查解一元二次方程﹣配方法,解答本题的关键是明确解一元二次方程的方法.4、C【解析】
菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.【详解】菱形和矩形一定都具有的性质是对角线互相平分.故选C.【点睛】本题考查了菱形及矩形的性质,熟知菱形和矩形的对角线的性质是解决本题的关键.5、B【解析】
根据一次函数随自变量的增大而减小,再根据一次函数与不等式的关系即可求解.【详解】随自变量的增大而减小,当时,,即关于的不等式的解集是.故选:.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像.6、D【解析】
样本是指从总体中抽取的部分个体,据此即可判断【详解】由题可知,所考查的对象为考生的成绩,所以从总体中抽取的部分个体为500名考生的成绩.故答案为:D【点睛】本题考查了样本的概念,明确题中考查的对象是解题的关键.7、D【解析】
A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.8、C【解析】
根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.【详解】解:根据黄金比的值得:37×0.1≈23℃.故选C.【点睛】本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.9、C【解析】
根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.10、B【解析】
先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】如图,连接PC.∵在△ABC中,AC=6,BC=8,AB=10,∴AB2=AC2+BC2,∴∠C=90°.又∵PE⊥AC于点E,PF⊥BC于点F.∴∠CEP=∠CFP=90°,∴四边形PECF是矩形.∴PC=EF.∴当PC最小时,EF也最小,即当PC⊥AB时,PC最小,∵12BC•AC=12AB•PC,即PC=∴线段EF长的最小值为245故选B.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.二、填空题(每小题3分,共24分)11、【解析】
根据不等式的性质进行判断即可【详解】解:∵ab,∴2a2b∴32a32b故答案为:<【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12、2【解析】
根据平方差公式即可得出答案.【详解】∵,∴故答案为2.【点睛】本题考查的是平方差公式,熟知平方差公式是解题的关键.13、或14【解析】
根据点P所在的位置分类讨论,分别画出图形,利用平行四边形的对边相等列出方程,从而求出结论.【详解】解:①当点P在线段BE上时,∵AF∥BE∴当AD=BC时,此时四边形ABCD为平行四边形由题意可知:AD=x,PE=2x∵PC=2cm,∴CE=PE-PC=(2x-2)cm∴BC=BE-CE=(14-2x)cm∴x=14-2x解得:x=;②当点P在EB的延长线上时,∵AF∥BE∴当AD=CB时,此时四边形ACBD为平行四边形由题意可知:AD=x,PE=2x∵PC=2cm,∴CE=PE-PC=(2x-2)cm∴BC=CE-BE=(2x-14)cm∴x=2x-14解得:x=14;综上所述:当秒或14秒时,以,,,为顶点的四边形是平行四边形.故答案为:秒或14秒.【点睛】此题考查的是平行四边形的性质和动点问题,掌握平行四边形的对边相等和行程问题中的公式是解决此题的关键.14、【解析】
首先数出数据的总数,然后数出各个小组内的数据个数,根据频率的计算公式,求出各段的频率,即可作出判断.【详解】解:共有10个数据,其中6~7的频率是1÷10=0.1;
8~9的频率是6÷10=0.3;
10~11的频率是8÷10=0.4;
11~13的频率是4÷10=0.1.
故答案为.【点睛】本题考查频数与频率,掌握频率的计算方法:频率=频数÷总数.15、H【解析】
根据HL定理推出Rt△ABC≌Rt△DCB,求出∠ACB=∠DBC,再根据等角对等边证明即可.【详解】解:HL定理,理由是:∵∠A=∠D=90°,
∴在Rt△ABC和Rt△DCB中
BC=CBAC=DB
∴Rt△ABC≌Rt△DCB(HL),
∴∠ACB=∠DBC,
∴OB=OC【点睛】本题考查了全等三角形的判定定理和性质定理、等腰三角形的判定等知识点,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等还有HL定理.16、-1【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘(x-3),得
1-2(x-3)=-k,
∵方程有增根,
∴最简公分母x-3=0,即增根是x=3,
把x=3代入整式方程,得k=-1.
故答案为:-1.【点睛】考查了分式方程的增根,增根问题可按如下步骤进行:
①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17、1【解析】
根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=1,故答案为:1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用.18、①③④【解析】
根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【详解】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为①③④.考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.三、解答题(共66分)19、(1)图见解析,;(2);(3)图见解析,(2,3).【解析】
(1)如图,画出△ABC绕原点O逆时针旋转90°的△ABC;(2)如图,根据弧长公式,计算点B运动的路径长;画出△ABC后的△ABC;(3)如图,画出△ABC关于原点O对称的△ABC.【详解】(1)如图所示:点B1的坐标为(3,−4);故答案为:(3,−4)(2)由勾股定理得:OB==5,∴故答案为:;(3)如图所示,点C2的坐标为(2,3)故答案为:(2,3).【点睛】此题考查作图-旋转变换,掌握作图法则是解题关键20、(1)证明见解析;(1)1.【解析】
(1)证明△ABE≌△CDF,根据全等三角形的对应边相等即可证得;
(1)根据四边形AECF为矩形,矩形的对角线相等,则AC=EF,据此即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∴∠1=∠1.
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴AE=CF.
(1)解:∵四边形AECF为矩形,
∴AC=EF,
∴,
又∵△ABE≌△CDF,
∴BE=DF,
∴当四边形AECF为矩形时,=1.【点睛】此题考查平行四边形的性质,矩形的性质,理解矩形的对角线相等是解题关键.21、(1)平行;(2)∠BAC=150°;(3)AB=AC且∠BAC≠60°;(4)∠BAC=60°.【解析】
(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)利用菱形的性质与判定得出即可;(4)根据∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【详解】(1)证明:∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.在△ABC和△DBE中,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;故答案为:∠BAC=150°;(3)当AB=AC且∠BAC≠60°时,四边形ADEF是菱形,理由是:由(1)知:AD=AB=EF,AC=DE=AF,∵AC=AB,∴AD=AF,∵四边形ADEF是平行四边形,AD=AF,∴平行四边形ADEF是菱形.故答案为:AB=AC且∠BAC≠60°(或AB=AC≠BC);(4)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在;故答案为:∠BAC=60°.【点睛】本题考查了等边三角形的性质及三角形内角和为180°、平行四边形和矩形的判定等知识,熟练掌握相关的定理是解题关键.22、(1)40,15,1°;(2)35,1;(3)50双.【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;用“38号”的百分比乘以10°,即可得圆心角的度数;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;10°×10%=1°;故答案为:40,15,1°.(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为1,∴中位数为(1+1)÷2=1;故答案为:35,1.(3)∵在40名学生中,鞋号为1的学生人数比例为25%,∴由样本数据,估计学校各年级中学生鞋号为1的人数比例约为25%,则计划购买200双运动鞋,1号的双数为:200×25%=50(双).【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23、(1)y=﹣x+5;(2)(4,1)或(﹣4,9).【解析】
(1)设此一次函数的表达式为y=kx+bk≠0.由点A、B(2)设点P的坐标为a,-a+5.根据三角形的面积公式即可列出关于a的含绝对值符号的一元一次方程,解方程即可得出结论.【详解】解:(1)设一次函数的表达式为y=kx+b,把点A(2,3)和点b=52k+b=3解得:b=5k=-1此一次函数的表达式为:y=-x+5,(2)设点P的坐标为(a,-a+5),∵B(0,5∴OB=5,又∵△POB的面积为10,∴1∴|a|=4,∴a=±4,∴点P的坐标为(4,1)或【点睛】本题考查了待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)利用待定系数法求出函数表达式;(2)找出关于a的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.24、(1);(2)一,【解析】
(1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.【详解】解:(1)====(2)小刚的解法从第一步开始出现错误解方程解:方程两边乘,得解得检验:当时,.所以,原分式方程的解是故答案为:一,【点睛】本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.25、(1)A种零件的单价为1元,B种零件的单价为60元;(2)最多购进A种零件2件.【解析】
(1)设A种零件的单价是x元,则B种零件的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年融资服务机构担保协议模板
- 2024年汽车维修保养服务协议细则
- 2024辣椒种苗供应及培育协议样本
- 2024专用消防水池建设协议范本
- 2024年专属个人投资协议样本
- 2024年度保安服务外包协议样本
- DB11∕T 1703-2019 口腔综合治疗台水路消毒技术规范
- DB11∕T 1684-2019 城市轨道交通乘客信息系统测试规范
- 2024商业用地租赁及盈利共享协议
- 2024国家物流代理协议模板规范
- 项目物资管理员培训交底总结
- 青光眼PPT课件完整版
- 快速消费品制造行业概述
- 类风湿性关节炎综述4572
- 《旅游管理信息系统》课程教学
- 乡村医生健康教育培训讲稿课件
- 成人癌性疼痛护理-中华护理学会团体标准2019
- 产品销售培训心得
- GB/T 42698-2023纺织品防透视性能的检测和评价
- 《无机化学》课程标准
- 二年级下册道德与法治教案-3.2节约粮食北师大版
评论
0/150
提交评论