版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省萍乡市名校2024届八年级下册数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.与-3A.6 B.-9 C.12 D.2.对一组数据:2,1,3,2,3分析错误的是()A.平均数是2.2 B.方差是4 C.众数是3和2 D.中位数是23.若Rt△ABC中两条边的长分别为a=3,b=4,则第三边c的长为()A.5 B. C.或 D.5或4.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>05.下列图形是中心对称图形的是()A. B.C. D.6.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF7.下列判断中,错误的是()A.方程x(x-1)=0是一元二次方程 B.方程xy+5x=0是二元二次方程C.方程x+3x+3-x3=28.用长为5,6,7的三条线段可以首尾依次相接组成三角形的事件是()A.随机事件 B.必然事件 C.不可能事件 D.以上都不是9.菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长是()A.4cm B.cm C.2cm D.2cm10.下列电视台的台标,是中心对称图形的是()A. B. C. D.11.五边形的内角和是()A.180° B.360° C.540° D.720°12.已知反比例函数,下列结论不正确的是().A.该函数图像经过点(-1,1) B.该函数图像在第二、四象限C.当x<0时,y随x增大而减小 D.当x>1时,二、填空题(每题4分,共24分)13.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.14.已知一个反比例函数的图象与正比例函数的图象有交点,请写出一个满足上述条件的反比例函数的表达式:__________________.15.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=147°,则∠PFE的度数是___.16.函数向右平移1个单位的解析式为__________.17.若的整数部分是a,小数部分是b,则______.18.若代数式在实数范围内有意义,则x的取值范围是_____.三、解答题(共78分)19.(8分)如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?20.(8分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.21.(8分)如图,中且,又、为的三等分点.(1)求证;(2)证明:;(3)若点为线段上一动点,连接则使线段的长度为整数的点的个数________.(直接写答案无需说明理由)22.(10分)已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.23.(10分)已知与成正比例,且当时,,则当时,求的值.24.(10分)如图,在中,,,是的垂直平分线.(1)求证:是等腰三角形.(2)若的周长是,,求的周长.(用含,的代数式表示)25.(12分)某车行经销的型自行车去年月份销售总额为万元,今年由于改造升级每辆车售价比去年增加元,今年月份与去年同期相比,销售数量相同,销售总额增加.(1)求今年型车每辆售价多少元?(2)该车行计划月份用不超过万元的资金新进一批型车和型车共辆,应如何进货才能使这批车售完后获利最多?今年、两种型号车的进价和售价如下表:型车型车进价(元/辆)售价(元/辆)今年售价26.李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.(1)求李大伯第一次购进的小玩具有多少个?(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?
参考答案一、选择题(每题4分,共48分)1、C【解析】
先对各个选项中的二次根式化简为最简二次根式(被开方数中不含分母且被开方数中不含有开得尽方的因数或因式),再在其中找-3的同类二次根式(化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式.)【详解】A.6为最简二次根式,且与-3B.-9=-3,与-C.12=23,与D.-15为最简二次根式,且与-3故选C.【点睛】本题考查二次根式的加减,能将各个选项中根式化简为最简二次根式,并能找对同类二次根式是本题的关键.2、B【解析】
根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.【详解】解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.故选:B.【点睛】此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题3、D【解析】
分情况讨论:①当a,b为直角边时,求得斜边c的长度;②当a为直角边,b为斜边时,求得另外一条直角边c的长度.【详解】解:分两种情况:
①当a,b为直角边时,第三边c==5;
②当a为直角边,b为斜边时,第三边c=.
故选D.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中讨论边长为4的边是直角边还是斜边是解题的关键.4、D【解析】
正数即“>0”可得答案.【详解】“a是正数”用不等式表示为a>0,故选D.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.5、C【解析】
根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.7、D【解析】
可以先判断各个选项中的方程是什么方程,从而可以解答本题.【详解】解:A、x(x-1)=0是一元二次方程,故A正确;B、xy+5x=0是二元二次方程,故B正确;C、x+3x+3D、2x2-x=0是一元二次方程,故故选D.【点睛】本题考查了各类方程的识别.8、B【解析】
根据三角形的三边关系定理,判断是否围成三角形即可.【详解】解:根据三角形的三边关系,5+6=11>7,所以用长为5cm、6cm、7cm的三条线段一定能组成三角形,所以是必然事件.故选:B.【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长那条就能够组成三角形了.用到的知识点为:必然事件指在一定条件下一定发生的事件.9、C【解析】如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD=cm,在Rt△ABO中,,AB=2cm,BO=cm,所以AO=1cm,故菱形的另一条对角线AC长为2AO=2cm,故选C.点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.10、D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D符合。故选D。11、C【解析】
根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.【详解】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.【点睛】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.12、C【解析】
∵∴A是正确的;反比例函数k=-1,图象在第二、四象限上,∴B是正确的;当x<0时,图象在第二象限上,y随着x的增大而增大,∴C是错误的;当x>l时,∴D是正确的.故选C二、填空题(每题4分,共24分)13、27【解析】试题分析:首先连接DB,DE,设DE交AC于M,连接MB,DF.证明只有点F运动到点M时,EF+BF取最小值,再根据菱形的性质、勾股定理求得最小值.试题解析:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=120°,∴∠HAD=60°,∵DH⊥AB,∴AH=AD,DH=32∵菱形ABCD的边长为4,E为AB的中点,∴AE=2,AH=2,∴EH=4,DH=23在RT△EHD中,DE=E∴EF+BF的最小值为27【考点】1.轴对称-最短路线问题;2.菱形的性质.14、【解析】
写一个经过一、三象限的反比例函数即可.【详解】反比例函数与有交点.故答案为:.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.15、16.5°【解析】
根据三角形中位线定理得到PE=AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:∵P是BD的中点,E是AB的中点,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠PFE=×(180°-∠EPF)=16.5°,故答案为:16.5°.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质、三角形内角和定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16、或【解析】
根据“左加右减,上加下减”的规律即可求得.【详解】解:∵抛物线向右平移1个单位∴抛物线解析式为或.【点睛】本题考查的是二次函数,熟练掌握二次函数的平移是解题的关键.17、1.【解析】
若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.18、x≤【解析】∵代数式在实数范围内有意义,∴,解得:.故答案为:.三、解答题(共78分)19、(1)体育场离陈欢家2.5千米,小刚在体育场锻炼了15分钟;(2)体育场离文具店1千米;(3)
小刚在文具店停留20分;(4)小强从文具店回家的平均速度是千米/分【解析】
(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;(4)用回家的路程除以回家的时间即可.【详解】(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5-2.5=1(千米);(3)由横坐标看出
小刚在文具店停留55-35=20(分);(4)小强从文具店回家的平均速度是3.5÷(125-55)=(千米/分)【点睛】本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.20、见解析;【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.21、(1)见解析;(2)见解析;(3)4.【解析】
(1)利用勾股定理求得AD、DE的长,再根据BD、AD的长,利用两边对应相等,且夹角相等的两个三角形相似,即可判断;(2)利用相似三角形的对应角相等以及三角形的外角的性质即可判断;(3)作EF⊥AB于点F,利用△ABC∽△EBF,求得EF的长,即可确定PE的长的范围,从而求解.【详解】解:(1)证明:∵,∴,∴在和中,,,∴,又∵,∴;(2)证明:∵,∴,又∵,∴;(3)作于点.在直角中,.∵,,∴,∴,即,解得:.又∵,,则,的整数值是1或2或3.则当时,的位置有2个;当时,的位置有1个;当时,的位置有1个.故的整数点有4个.故答案是:4.【点睛】本题考查了相似三角形的判定与性质,正确作出辅助线,利用相似三角形的性质求得PE的范围是关键.22、(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣3.【解析】
(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE=AF,即可得出结论;(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF=60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=3FH,CF=2CH,FH=3CH,设CH=x,则BE=CF=2x,FH=3x,GE=GF=2FH=23x,GH=3FH=3x,得出EH=4+x=23x+3x,解得:x=3﹣1,求出FH=3x=3﹣3即可.【详解】(1)解:△AEF是等边三角形,理由如下:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=AD,∠B=∠D,∵∠ABC=60°,∴∠BAD=120°,△ABC是等边三角形,∴AC=AB,∵点E是线段CB的中点,∴AE⊥BC,∴∠BAE=30°,∵∠EAF=60°,∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,在△BAE和△DAF中,∠B∴△BAE≌△DAF(ASA),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;故答案为:等边三角形;(2)证明:连接AC,如图2所示:同(1)得:△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC,∵∠EAF=60°,∴∠BAE=∠CAF,∵∠BCD=∠BAD=120°,∴∠ACF=60°=∠B,在△BAE和△CAF中,∠BAE∴△BAE≌△CAF(ASA),∴BE=CF;(3)解:同(1)得:△ABC和△ACD是等边三角形,∴AB=AC,∠BAC=∠ACB=∠ACD=60°,∴∠ACF=120°,∵∠ABC=60°,∴∠ABE=120°=∠ACF,∵∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,∠BAE∴△BAE≌△CAF(ASA),∴BE=CF,AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,∴∠AEB=45°,∴∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:则GE=GF,∠FGH=30°,∴FG=2FH,GH=3FH,∵∠FCH=∠ACF﹣∠ACB=60°,∴∠CFH=30°,∴CF=2CH,FH=3CH,设CH=x,则BE=CF=2x,FH=3x,GE=GF=2FH=23x,GH=3FH=3x,∵BC=AB=4,∴CE=BC+BE=4+2x,∴EH=4+x=23x+3x,解得:x=3﹣1,∴FH=3x=3﹣3,即点F到BC的距离为3﹣3.【点睛】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.23、12.【解析】
利用正比例函数的定义,设y=k(x-2),然后把已知的一组对应值代入求出k即可得到y与x的关系式;再将x=5代入已求解析式,从而可求出y的值.【详解】设,把代入得,解得,∴,即,当时,.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.24、(1)详见解析;(2)a+b【解析】
(1)首先由等腰三角形ABC得出∠B,然后由线段垂直平分线的性质得出∠CDB,即可判定;(2)由等腰三角形BCD,得出AB,然后即可得出其周长.【详解】(1)∵,∴∵是的垂直平分线∴∴∵是的外角∴∴∴∴是等腰三角形;(2)∵,的周长是∴∵∴∴的周长.【点睛】此题主要考查线段垂直平分线的性质以及等腰三角形的判定与性质,熟练掌握,即可解题.25、(1)今年A型车每辆售价为1000元;(2)当购进A型车1辆、购进B型车20辆时,才能使这批车售完后获利最多.【解析】
(1)设今年A型车每辆售价为x元,则去年A型车每辆售价为(x−200)元,根据数量=总价÷单价,结合今年6月份与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度技术开发费用结算合同3篇
- 二零二四年度旅游景点开发合同involving景区建设与经营权分配
- 新版垫资书合同标准版
- 2024年度服务合同:企业信息化建设与维护2篇
- 民办幼儿园教师合同范本
- 土地承包流转合同范本2篇
- 临时聘用协议书样板
- 酒店员工的劳动合同
- 2024版建筑施工用机械租赁合同3篇
- 《对数的创始人》课件
- 【基于杜邦分析体系的企业盈利能力分析文献综述及理论基础2700字】
- 基金经理绩效考核
- 医患沟通的法律基础
- 建筑工程项目管理体系
- 软件使用授权书
- 肥料、农药采购服务方案(技术方案)
- FAB-常用词汇介绍
- 放射防护管理机构(组织构成、管理部门、人员、职责)
- 2023-2024年司考刑法真题(含答案及解析)
- 上肢血管超声检查
- pep人教版英语四年级上册 Unit 6《Meet my family!》单元作业设计
评论
0/150
提交评论