广西壮族自治区钦州市浦北县2024届八年级下册数学期末检测试题含解析_第1页
广西壮族自治区钦州市浦北县2024届八年级下册数学期末检测试题含解析_第2页
广西壮族自治区钦州市浦北县2024届八年级下册数学期末检测试题含解析_第3页
广西壮族自治区钦州市浦北县2024届八年级下册数学期末检测试题含解析_第4页
广西壮族自治区钦州市浦北县2024届八年级下册数学期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区钦州市浦北县2024届八年级下册数学期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有()A.1个 B.2个 C.3个 D.4个2.如果有意义,那么实数x的取值范围是()A.x≥0 B.x≠2 C.x≥2 D.x≥-23.下列给出的四个点中,不在直线y=2x-3上的是()A.(1,-1) B.(0,-3) C.(2,1) D.(-1,5)4.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则分组后频率为0.2的一组是()A.6~7B.8~9C.10~11D.12~135.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A. B. C.2 D.6.下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有()A.1个 B.2个 C.3个 D.4个7.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么的值为()A.13 B.19 C.25 D.1698.八边形的内角和为()A.180° B.360° C.1080° D.1440°9.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A. B. C. D.10.一组数据3、-2、0、1、4的中位数是()A.0 B.1 C.-2 D.4二、填空题(每小题3分,共24分)11.已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为______________㎝212.已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.13.直线沿轴平行的方向向下平移个单位,所得直线的函数解析式是_________14.如图,在正方形ABCD中,以A为顶点作等边三角形AEF,交BC边于点E,交DC边于点F,若△AEF的边长为2,则图中阴影部分的面积为_____.15.如图,已知平行四边形,,是边的中点,是边上一动点,将线段绕点逆时针旋转至,连接,,,,则的最小值是____.16.若把分式中的x,y都扩大5倍,则分式的值____________.17.如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为_________.18.矩形的两条对角线的夹角为,较短的边长为,则对角线长为________.三、解答题(共66分)19.(10分)计算:(1);(2)20.(6分)2019年的暑假,李刚和他的父母计划去新疆旅游,他们打算坐飞机到乌鲁木齐,第二天租用一辆汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为天,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助李刚,选择租用哪个公司的车自驾出游比较合算,并说明理由.21.(6分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.22.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.23.(8分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.24.(8分)(1)计算:(2)当时,求代数的值.25.(10分)平衡车越来越受到中学生的喜爱,某公司今年从厂家以3000元/辆的批发价购进某品牌平衡车300辆进行销售,零售价格为4200元/辆,暑期将至,公司决定拿出一部分该品牌平衡车以4000元/辆的价格进行促销.设全部售出获得的总利润为y元,今年暑假期间拿出促销的该品牌平衡车数量为x辆,根据上述信息,解答下列问题:(1)求y与x之间的函数解析式(也称关系式),并直接写出x的取值范围;(2)若以促销价进行销售的数量不低于零售价销售数量的,该公司应拿出多少辆该品牌平衡车促销才能使这批车的销售利润最大?并求出最大利润.26.(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行速度==60米/分;故①符合题意;设乙的速度为:x米/分,由题意可得:16×60=(16﹣4)x,解得x=80∴乙的速度为80米/分;∴乙走完全程的时间==30分,故②符合题意;由图可得:乙追上甲的时间为(16﹣4)=12分;故③符合题意;乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④符合题意;故正确的结论为:①②③④,故选:D.【点睛】本题考查了一次函数的应用,明确题意,读懂函数图像,是解题的关键.2、D【解析】

根据二次根式有意义的条件即可求出x的取值范围.【详解】由题意可知:x+2≥0,∴x≥-2故选D.【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件.3、D【解析】只需把每个点的横坐标即x的值分别代入y=2x-3,计算出对应的y值,然后与对应的纵坐标比较即可A、当x=1时,y=-1,(1,-1)在直线y=2x-3上;B、当x=0时,y=-3,(0,-3)在直线y=2x-3上;C、当x=2时,y=1,(2,1)在直线y=2x-3上;D、当x=-1时,y=-5,(-1,5)不在直线y=2x-3上.故选D.4、D【解析】分析:分别计算出各组的频数,再除以10即可求得各组的频率,看谁的频率等于0.1.

详解:A中,其频率=1÷10=0.1;

B中,其频率=6÷10=0.3;

C中,其频率=8÷10=0.4;

D中,其频率=4÷10=0.1.

故选:D.

点睛:首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.5、A【解析】试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=.故选A.考点:1.勾股定理2.含30度角的直角三角形.6、D【解析】

分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.【详解】解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题;平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题。故选:D【点睛】本题考查的是命题的真假判断和逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7、C【解析】试题分析:根据题意得:=13,4×ab=13﹣1=12,即2ab=12,则==13+12=25,故选C.考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.8、C【解析】试题分析:根据n边形的内角和公式(n-2)×180º可得八边形的内角和为(8-2)×180º=1080º,故答案选C.考点:n边形的内角和公式.9、A【解析】

根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.

错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.

10、B【解析】

将这组数据从小到大重新排列后为-2、0、1、3、4;最中间的那个数1即中位数.【详解】解:将这组数据从小到大重新排列后为-2、0、1、3、4;最中间的那个数1即中位数.故选:B【点睛】本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.二、填空题(每小题3分,共24分)11、14【解析】

根据菱形的面积等于两对角线乘积的一半求得其面积即可.【详解】由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷1=14cm1.故答案为:14.【点睛】此题主要考查菱形的面积等于两条对角线的积的一半.12、2【解析】

图象经过一、三象限,还过第二象限,所以直线与y轴的交点在正半轴上,则b>2.【详解】解:∵图象经过第一、二、三象限,∴直线与y轴的交点在正半轴上,则b>2.∴符合条件的b的值大于2即可.∴b=2,故答案为2.【点睛】考查了一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数及常数是大于2或是小于2.13、;【解析】

根据函数的性质,一次项的系数决定直线的走向,常数项决定在y轴的交点,因此向下3个单位,就对常数项进行变化,一次项系数不变.【详解】根据一次函数的性质,上下平移只对常数项进行分析,向下平移对常数项减去相应的数,向上平移对常数项加上相应的数,因此可得,即故答案为【点睛】本题主要考查一次函数的性质,关键要理解一次函数的一次项系数和常数项所代表的意义.14、1【解析】

先根据直角边和斜边相等,证出△ABE≌△ADF,从而得CE=CF,继而在△ECF利用勾股定理求出CE、CF长,再利用三角形的面积公式进行求解即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠C=∠D=90°,∵△AEF是等边三角形,∴AE=EF=AF=2,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴EC=CF,又∵∠C=90°,∴CE2+CF2=EF2=22,∴CE=CF=,∴S△ECF==1,故答案为:1.【点睛】本题考查了正方形的性质,等边三角形性质,勾股定理,三角形的面积等知识,熟练掌握和灵活运用相关知识是解题的关键.15、【解析】

如图,作交于,连接、、作于,首先证明,因为,即可推出当、、共线时,的值最小,最小值.【详解】如图,作交于,连接、、作于.是等腰直角三角形,,,,,,,,,,,,,,当、、共线时,的值最小,最小值,在中,,,在中,.故答案为:.【点睛】本题考查了四边形的动点问题,掌握当、、共线时,的值最小,最小值是解题的关键.16、扩大5倍【解析】【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.【详解】把分式中的x,y都扩大5倍得:=,即分式的值扩大5倍,故答案为:扩大5倍.【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.17、【解析】设直线的解析式为y=kx+b(k≠0),∵A(1,1),B(4,0),,解之得,∴直线AB的解析式为,∵P(2,m)在直线上,.18、1【解析】分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.详解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=1cm.故答案为1.点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.三、解答题(共66分)19、【解析】

(1)先化简二次根式,再加减;(2)根据平方差公式进行计算.【详解】(1);(2)【点睛】考核知识点:二次根式的运算.掌握运算法则是关键.20、(1),;(2)租用乙公司的车比较合算,理由见解析.【解析】

(1)设,将代入即可求出关于的函数表达式,然后设,把,代入即可求出关于的函数表达式;(2)根据题意,分别求出、和时,x的取值范围,从而得出结论.【详解】解:(1)设,把代入得,.∴.设,把,代入得,解得∴.(2)当,即时,;当,即时,;当,即时,.所以,他们自驾出游大于5天时,选择方案二,租用乙公司的车比较合算;他们自驾出游等于5天时,两家公司的费用相同;他们自驾出游小于5天时,选择方案一,租用甲公司的车比较合算.【点睛】此题考查的是一次函数的应用,掌握利用待定系数法求一次函数解析式是解决此题的关键.21、原式=【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.试题解析:原式====解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、1、1、2,∵不等式有意义时x≠±1、1,∴x=2,则原式==1.点睛:本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.22、【解析】

连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可【详解】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC=,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点睛】此题考查勾股定理和勾股定理的逆定理,掌握运算法则是解题关键23、(1)证明见解析;(2)当t=10时,四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由见解析.【解析】

(1)由已知条件可得RT△CDF中∠C=30°,即可知DF=CD=AE=2t;(2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.【详解】(1)∵Rt△ABC中,∠B=90°,∠A=60°,∴∠C=90°−∠A=30°.又∵在Rt△CDF中,∠C=30°,CD=4t∴DF=CD=2t,∴DF=AE;(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60−4t=2t,解得:t=10,即当t=10时,四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°但BF≠DF,∴四边形BEDF不可能为正方形。【点睛】此题考查四边形综合题,解题关键在于得到DF=CD=AE=2t24、(1);(2)【解析】

(1)根据二次根式的运算法则和完全平方公式计算并化简即可;(2)根据x,y的数值特点,先求出x+y,xy的值,再把原式变形代入求值即可。【详解】解:(1)原式==(2),,则故答案为:;【点睛】本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论