版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省红河市2024年数学八年级下册期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程S(千米)与时刻①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.42.在平面直角坐标系中,已知点A(O,1),B(1,2),点P在轴上运动,当点P到A、B两点的距离之差的绝对值最大时,该点记为点P1,当点P到A、B两点的距离之和最小时,该点记为点P2,以P1P2为边长的正方形的面积为A.1 B. C. D.53.若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=0 C.m≠2 D.n=04.(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【】A.cmB.cmC.cmD.cm5.矩形的对角线一定具有的性质是()A.互相垂直 B.互相垂直且相等C.相等 D.互相垂直平分6.不等式组的解集在数轴上表示正确的是A. B. C. D.7.已知一次函数,若随的增大而减小,则该函数的图像经过()A.第一、二、三象限 B.第二、三、四象限C.第一、二、四象限 D.第一、三、四象限8.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.69.如图,在中,的平分线交于,若,,则的长度为()A. B. C. D.10.下列角度中,不能是某多边形内角和的是()A.600° B.720° C.900° D.1080°11.能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等12.如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为()A.2 B.C. D.1二、填空题(每题4分,共24分)13.将直线向下平移4个单位,所得到的直线的解析式为___.14.如图,直线与直线交于点,则不等式的解集是__________.15.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.16.如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为_____.17.已知:如图,平行四边形中,平分交于,平分交于,若,,则___.18.直线与轴的交点坐标___________三、解答题(共78分)19.(8分)如图,△ABC三个顶点的坐标分别是A1,1(1)请画出△ABC向左平移5个单位长度后得到的△A(2)请画出△ABC关于原点对称的△A(3)在x轴上求点P的坐标,使PA+PB的值最小.20.(8分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别频数165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间1220分析数据:车间平均数众数中位数方差甲车1乙车6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.21.(8分)(1)解不等式:(2)解方程:22.(10分)(1)因式分解:;(2)计算:.23.(10分)如图,两个全等的Rt△AOB、Rt△OCD分别位于第二、第一象限,∠ABO=∠ODC=90°,OB、OD在x轴上,且∠AOB=30°,AB=1.(1)如图1中Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转度,再绕斜边中点旋转度得到的,C点的坐标是;(2)是否存在点E,使得以C、O、D、E为顶点的四边形是平行四边形,若存在,写出E点的坐标;若不存在请说明理由.(3)如图2将△AOC沿AC翻折,O点的对应点落在P点处,求P点的坐标.24.(10分)解下列方程:(1)(2)25.(12分)当在什么范围内取值时,关于的一元一次方程的解满足?26.计算:(1)-2(2)(-)•(+)
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:根据函数的图像直接读取信息:①乙比甲晚出发1小时,正确;②乙应出发2小时后追上甲,错误;③甲的速度为12÷3=4(千米/小时),正确;甲到达需要20÷4=5(小时);乙的速度为12÷2=6(千米/小时),SI④乙到达需要的时间为20÷6=313(小时),即乙在甲出发41故选C考点:一次函数的图像与性质2、C【解析】
由三角形两边之差小于第三边可知,当A、B、P三点不共线时,|PA-PB|<AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A、B、P三点共线时,|PA-PB|=AB,即|PA-PB|≤AB,所以当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直线AB的解析式,再令y=0,求出x的值即可得到点P1的坐标;点A关于x轴的对称点为A',求得直线A'B的解析式,令y=0,即可得到点P2的坐标,进而得到以P1P2为边长的正方形的面积.【详解】由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,1),B(1,2),∴,解得,∴y=x+1,令y=0,则0=x+1,解得x=-1.∴点P1的坐标是(-1,0).∵点A关于x轴的对称点A'的坐标为(0,-1),设直线A'B的解析式为y=k'x+b',∵A'(0,-1),B(1,2),,解得,∴y=3x−1,令y=0,则0=3x−1,解得x=,∴点P2的坐标是(,0).∴以P1P2为边长的正方形的面积为(+1)2=,【点睛】本题考查了最短距离问题,待定系数法求一次函数的解析式及x轴上点的坐标特征.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.3、A【解析】试题解析:若y关于x的函数是正比例函数,解得:故选A.4、B。【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,在Rt△AOB中,,∵BD×AC=AB×DH,∴DH=cm。在Rt△DHB中,,AH=AB﹣BH=cm。∵,∴GH=AH=cm。故选B。考点:菱形的性质,勾股定理,锐角三角函数定义。5、C【解析】
根据矩形的性质即可判断.【详解】因为矩形的对角线相等且互相平分,所以选项C正确,故选C.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.6、C【解析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,不等式组的解集﹣2≤x<1在数轴上表示为C.故选C.7、C【解析】
根据题意判断k的取值,再根据k,b的符号正确判断直线所经过的象限.【详解】解:若y随x的增大而减小,则k<0,即-k>0,故图象经过第一,二,四象限.
故选C.【点睛】本题考查的是一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.能够根据k,b的符号正确判断直线所经过的象限.8、C【解析】
先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8-x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x的值,进而得出DE的长.【详解】解:∵Rt△DC′B由Rt△DBC翻折而成,
∴CD=C′D=AB=8,∠C=∠C′=90°,
设DE=x,则AE=8-x,
∵∠A=∠C′=90°,∠AEB=∠DEC′,
∴∠ABE=∠C′DE,
在Rt△ABE与Rt△C′DE中,
∴Rt△ABE≌Rt△C′DE(ASA),
∴BE=DE=x,
在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x)2=x2,
解得:x=1,
∴DE的长为1.
故选C.【点睛】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.9、B【解析】
由角平分线的定义和平行四边形的性质可求得∠ABE=∠AEB,易得AB=AE.【详解】解:∵四边形ABCD为平行四边形,∴AB=CD=3,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,故选:B.【点睛】本题主要考查平行四边形的性质,利用平行线的性质和角平分线的定义求得∠ABE=∠AEB是解题的关键.10、A【解析】
利用多边形的内角和公式即可作出判断.【详解】解:∵多边形内角和公式为(n-2)×180,
∴多边形内角和一定是180的倍数.
故选:A.【点睛】本题考查多边形内角和公式,在解题时要记住多边形内角和公式,并加以应用即可解决问题.11、D【解析】
根据平行四边形的判定定理进行推导即可.【详解】解:如图所示:若已知一组对边平行,一组对角相等,易推导出另一组对边也平行,两组对边分别平行的四边形是平行四边形.故根据平行四边形的判定,只有D符合条件.故选D.考点:本题考查的是平行四边形的判定点评:解答本题的关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.12、B【解析】
直接利用三角形的中位线定理得出,且,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【详解】连接DE∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点∴DE是△ABC的中位线,∴,且,∵EF⊥AC于点F∴,∴故根据勾股定理得∵G为EF的中点∴∴故答案为:B.【点睛】本题考查了三角形的线段长问题,掌握中位线定理、勾股定理是解题的关键.二、填空题(每题4分,共24分)13、【解析】
直接根据“上加下减”的平移规律求解即可.【详解】将直线向下平移4个单位长度,所得直线的解析式为,即.故答案为:.【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.14、【解析】
不等式的解集为直线在直线上方部分所对的x的范围.【详解】解:由图象可得,当时,直线在直线上方,所以不等式的解集是.故答案为:【点睛】本题考查了一次函数与不等式的关系,合理利用图象信息是解题的关键.15、2【解析】
根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
所以这5个数据分别是x,y,2,1,1,且x<y<2,
当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
所以这组数据可能的最大的和是0+1+2+1+1=2.
故答案为:2.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.16、3+4【解析】
由∠C=120°,AC=BC可知∠A=30°,又有∠EDF=30°,联想一线三等角模型,延长DC到G,使DG=AE,得ΔDFG≅ΔEDA,进而可得GF=6,∠G=30°,由于∠FCG=60°,即可得ΔCFG是直角三角形,易求CG,由DG=AE即可解题.【详解】解:如图,延长DC到G,使DG=AE,连接FG,∵AC=BC,∠C=120°,∴∠A=30°,∠FCG=60°,∵∠A+∠1=∠EDF+∠2,又∵∠EDF=30°,∴∠1=∠2,在ΔEDA和ΔDFG中,AE=GD∠1=∠2∴ΔEDA≅ΔDFG(SAS)∴AD=GF=6,∠A=∠G=30°,∵∠G+∠FCG=90°,∴∠CFG=90°,设CF=x,则CG=2x,由CFx2解得x1=23∴CG=43∴AE=DG=3+43故答案为:3+43【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质和等腰直角三角形的性质.本题解题关键是通过一线三等角模型构造全等三角形,从而得到RtΔ17、1【解析】
先证明AB=AE=3,DC=DF=3,再根据EF=AE+DF-AD即可计算.【详解】四边形是平行四边形,,,,平分交于,平分交于,,,,,.故答案为1.【点睛】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.18、(0,-3)【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.【详解】解:由题意得:当x=0时,y=2×0-3=-3,即直线与y轴交点坐标为(0,-3),故答案为(0,-3).【点睛】本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)P点坐标为:2,0.【解析】
(1)分别作出三顶点向左平移5个单位长度后得到的对应点,再顺次连接即可得;(2)分别作出三顶点关于原点O成中心对称的对应点,再顺次连接即可得;(3)作点A关于x轴的对称点A′,连接A′B,与x轴的交点即为所求.【详解】解:(1)如图所示:△A(2)如图所示:△A(3)如图所示:作点A关于x轴的对称点A′,连接A′B,此时PA+PB的值最小,P点坐标为:2,0.【点睛】本题考查了利用平移变换和旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.20、(1)甲车间样品的合格率为(2)乙车间的合格产品数为个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为;(2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为,∴乙车间的合格产品数为(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.21、(1);(2)【解析】
(1)按照去分母、移项、合并同类项的步骤求解即可;(2)按照去分母、系数化1的步骤求解即可.【详解】(1)去分母得移项、合并得解得所以不等式的解集为(2)去分母得解得经检验,是分式方程的解.【点睛】此题主要考查不等式以及分式方程的求解,熟练掌握,即可解题.22、(1);(2)m【解析】
(1)先对原式提取公因式x,再用完全平方差公式分解即可得到答案;(2)先对括号的式子进行通分,再把括号外的式子的分母用平方差公式分解,再进行约分化简即可得到答案.【详解】解:(1)==.(2)原式====.【点睛】本题主要考查了因式分解和分式的混合运算.掌握用公式法分解因式以及提取公因式法分解因式是解题的关键.23、(1)90,180,(1,);(2)存在,E的坐标为(0,)或(2,),或(0,﹣);(3)P(1﹣,1+).【解析】
(1)先求出OB,再由旋转求出OD,CD,即可得出结论;(2)先求出D的坐标,再分三种情况,利用平行四边形的性质即可得出结论;(3)先判断出四边形OAPC是正方形,再利用中点坐标公式即可得出结论【详解】解:(1)Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转90°,再绕斜边中点旋转180°得到的,在Rt△AOB中,∠AOB=30°,AB=1,∴OB=,由旋转知,OD=AB=1,CD=OB=,∴C(1,),故答案为90,180,(1,);(2)存在,理由:如图1,由(1)知,C(1,),∴D(1,0),∵O(0,0),∵以C、O、D、E为顶点的四边形是平行四边形,∴①当OC为对角线时,∴CE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国脱水莴笋片市场调查研究报告
- 2024至2030年正方形餐桌项目投资价值分析报告
- 2024年中国涂布热风干燥箱市场调查研究报告
- 2024至2030年普通型过滤器项目投资价值分析报告
- 2024至2030年六角型视频线项目投资价值分析报告
- 2024年中国无底纸巾盒市场调查研究报告
- 2024至2030年PVC双面涂塑篷布项目投资价值分析报告
- 2024年耐压式舱口盖项目可行性研究报告
- 2024年之字形缝纫机项目可行性研究报告
- 2025届常州市实验初级中学高考仿真卷英语试卷含解析
- 第四次全国文物普查工作推进情况汇报3篇
- 2024-2025学年新教材高中地理 第四章 地貌 第二节 地貌的观察教案(2)新人教版必修1
- 《江城子·乙卯正月二十日夜记梦》课件 -2024-2025学年统编版高中语文选择性必修上册
- 新员工岗前安全培训考试题含完整答案【各地真题】
- 第四届“长城杯”网络安全大赛(高校组)初赛备赛试题库-上(单选题部分)
- 国开2024年秋季《形势与政策》大作业答案
- 2024年浙江省初中学业水平考试数学试题(潮汐卷)(解析版)
- 中职教育一年级上学期英语《We Are Friends》课件
- 专题10 议论文阅读(含答案) 2024年中考语文【热点-重点-难点】专练(上海专用)
- 21 小圣施威降大圣 公开课一等奖创新教案
- 新概念第四册课文翻译及学习笔记:Lesson5
评论
0/150
提交评论