湖南省株洲市炎陵县2024年八年级下册数学期末复习检测模拟试题含解析_第1页
湖南省株洲市炎陵县2024年八年级下册数学期末复习检测模拟试题含解析_第2页
湖南省株洲市炎陵县2024年八年级下册数学期末复习检测模拟试题含解析_第3页
湖南省株洲市炎陵县2024年八年级下册数学期末复习检测模拟试题含解析_第4页
湖南省株洲市炎陵县2024年八年级下册数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省株洲市炎陵县2024年八年级下册数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(-3,2)2.化简(-1)2-(-3)0+得()A.0 B.-2 C.1 D.23.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.4.已知点(,)在第二象限,则的取值范围是()A. B.C. D.5.如图,在中,对角线与交于点,添加下列条件不能判定为矩形的只有()A. B.,,C. D.6.如图,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A.9cm B.8cm C.7cm D.6cm7.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x﹣10123y51﹣1﹣11则该二次函数图象的对称轴为()A.y轴 B.直线x= C.直线x=1 D.直线x=8.如图,有一直角三角形纸片ABC,∠C=90°,∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,则BC的长度为()A.2 B.+2 C.3 D.29.如图,将平行四边形纸片折叠,使顶点恰好落在边上的点处,折痕为,那么对于结论:①,②.下列说法正确的是()A.①②都错 B.①对②错 C.①错②对 D.①②都对10.若等腰的周长是,一腰长为,底边长为,则与的函数关系式及自变量的取值范围是A. B.C. D.二、填空题(每小题3分,共24分)11.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为_____cm.12.甲、乙二人在相同情况下,各射靶次,两人命中环数的方差分别是,,则射击成绩较稳定的是_________.(填“甲”或“乙")13.=_____.14.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.15.如图,在中,,,,点在上,以为对角线的所有中,的最小值是____.16.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.17.如图,是根据四边形的不稳定性制作的边长均为的可活动菱形衣架,若墙上钉子间的距离,则=______度.18.如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.三、解答题(共66分)19.(10分)求证:菱形的对角线互相垂直.20.(6分)如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.(1)若OA=8,求k的值;(2)若CB=BD,求点C的坐标.21.(6分)在平面直角坐标系中,过点、分别作轴的垂线,垂足分别为、.(1)求直线和直线的解析式;(2)点为直线上的一个动点,过作轴的垂线交直线于点,是否存在这样的点,使得以、、、为顶点的四边形为平行四边形?若存在,求此时点的横坐标;若不存在,请说明理由;(3)若沿方向平移(点在线段上,且不与点重合),在平移的过程中,设平移距离为,与重叠部分的面积记为,试求与的函数关系式.22.(8分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.23.(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.24.(8分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘,∠B=∠ADC=90°.E、F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_________;探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55海里/小时的速度前进,舰艇乙沿北偏东50°的方向以75海里/小时的速度前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.25.(10分)如图,在中,,,是的垂直平分线.(1)求证:是等腰三角形.(2)若的周长是,,求的周长.(用含,的代数式表示)26.(10分)如图,已知在△ABC中,AB=AC=13cm,D是AB上一点,且CD=12cm,BD=8cm.(1)求证:△ADC是直角三角形;(2)求BC的长

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.【详解】根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).故选B.【点睛】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.2、D【解析】

先利用乘方的意义、零指数幂的性质以及二次根式的性质分别化简,然后再进一步计算得出答案.【详解】原式=1-1+1=1.故选:D.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.3、C【解析】

根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小4、B【解析】

根据象限的定义以及性质求出的取值范围即可.【详解】∵点(,)在第二象限∴解得故答案为:B.【点睛】本题考查了象限的问题,掌握象限的定义以及性质是解题的关键.5、C【解析】

根据矩形的判定即可求解.【详解】A.,对角线相等,可以判定为矩形B.,,,可知△ABC为直角三角形,故∠ABC=90°,故可以判定为矩形C.,对角线垂直,不能判定为矩形D.,可得AO=BO,故AC=BD,可以判定为矩形故选C.【点睛】此题主要考查矩形的判定,解题的关键是熟知矩形的判定定理.6、B【解析】

根据含30度角的直角三角形的性质即可求出答案.【详解】直角三角形中,30°所对的边的长度是斜边的一半,所以AB=2BC=8cm.故选B.【点睛】本题考查含30度角的直角三角形,解题的关键是熟练运用30度角的直角三角形的性质,本题属于基础题型.7、D【解析】观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x=.故选D.8、C【解析】分析:先由∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,得到AD=BD=2,再根据∠C=90°,∠B=30°得∠CAD=30°,然后在Rt△ACD中,利用30°的角所对的直角边是斜边的一半求得CD=1,从而求得BC的长度.详解:∵△ABC折叠,点B与点A重合,折痕为DE,∴AD=BD,∠B=∠CAD=30°,∠DEB=90°,∴AD=BD=2,∠CAD=30°,∴CD=AD=1,∴BC=BD+CD=2+1=3故选:C.点睛:本题考查了翻折变换,主要利用了翻折前后对应边相等,此类题目,难点在于利用直角三角形中30°的角所对应的直角边是斜边的一半来解决问题.9、D【解析】

根据折叠重合图形全等,已经平行四边形的性质,可以求证①②均正确.【详解】折叠后点落在边上的点处,又平行四边形中,,又平行四边形中,,是平行四边形,.故选D.【点睛】本题综合考查全等三角形的性质、平行四边形的性质、平行线的判定、平行四边形的判定.10、C【解析】

根据题意,等腰三角形的两腰长相等,即可列出关系式.【详解】依题意,,根据三角形的三边关系得,,得,,得,得,,故与的函数关系式及自变量的取值范围是:,故选.【点睛】本题考查了一次函数的应用,涉及了等腰三角形的性质,三角形的三边关系,做此类题型要注意利用三角形的三边关系要确定边长的取值范围.二、填空题(每小题3分,共24分)11、1【解析】

如图,作PH⊥OB于H.由角平分线的性质定理推出PH=PD=3cm,再证明∠PCH=30°即可解决问题.【详解】解:如图,作PH⊥OB于H.∵∠POA=∠POB,PH⊥OB,PD⊥OA,∴PH=PD=3cm,∵PC∥OA,∴∠POA=∠CPO=15°,∴∠PCH=∠COP+∠CPO=30°,∵∠PHC=90°,∴PC=2PH=1cm.故答案为1.【点睛】本题考查角平分线的性质,平行线的性质,等腰三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.12、乙【解析】

根据方差的意义解答即可.【详解】方差反映了数据的离散程度,方差越小,成绩越稳定,故射击成绩比较稳定的是乙.故答案为:乙.【点睛】本题主要考查了方差的意义,清楚方差反映了数据的离散程度,方差越小,数据越稳定是解题的关键.13、1【解析】

利用二次根式乘除法法则进行计算即可.【详解】===1,故答案为1.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.14、【解析】

利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.【详解】平分,.平分,..同理可得:;......【点睛】本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.15、6【解析】

由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【详解】∵四边形ADCE是平行四边形,

∴OD=OE,OA=OC.

∴当OD取最小值时,DE线段最短,此时OD⊥BC.

∴OD是△ABC的中位线,∴,,∴,∵在Rt△ABC中,∠B=90°,

,,∴,∴.故答案为:6.【点睛】本题考查了平行四边形的性质,三角形中位线的性质以及垂线段最短的知识.正确理解DE最小的条件是关键.16、1【解析】

根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.【详解】∵DE为△ABC的中位线,∴DE=BC=×8=4,∵∠AFB=90°,D是AB的中点,∴DF=AB=×6=3,∴EF=DE-DF=1,故答案为:1.【点睛】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.17、1【解析】

根据题意可得,AB和菱形的两边构成的三角形是等边三角形,可得∠A=60°,所以,∠1=1°【详解】解:如图,连接AB.

∵菱形的边长=25cm,AB=BC=25cm

∴△AOB是等边三角形

∴∠AOB=60°,

∴∠AOD=1°

∴∠1=1°.

故答案为:1.【点睛】本题主要考查菱形的性质及等边三角形的判定的运用.18、(0,1).【解析】试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.试题解析:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).考点:坐标与图形变化-旋转.三、解答题(共66分)19、详见解析【解析】

根据AD=AB,OD=OB,AO=AO,推得△AOD≌△AOB,所以对角线AC,BD互相垂直.【详解】已知:菱形ABCD中,AC,BD交于点O,求证:AC⊥BD.证明:∵四边形ABCD是菱形,∴AD=AB,OD=OB,又∵AO=AO,∴△AOD≌△AOB(SSS),∴∠AOD=∠AOB,又∵∠AOD+∠AOB=180°,∴∠AOD=90°,即

AC⊥BD.故菱形的对角线互相垂直.【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.20、(1)1;(2)(3,2)【解析】

(1)过C作CM⊥AB,CN⊥y轴,利用勾股定理求出CM的长,结合OA的长度,则C点坐标可求,因C在图象上,把C点代入反比例函数式求出k即可;(2)已知CB=BD,则AD长可求,设OA=a,把C、D点坐标用已知数或含a的代数式表示,因C、D都在反比例函数图象上,把C、D坐标代入函数式列式求出a值即可.【详解】(1)解:过C作CM⊥AB,CN⊥y轴,垂足为M、N,∵CA=CB=5,AB=6,∴AM=MB=3=CN,在Rt△ACD中,CD==4,∴AN=4,ON=OA﹣AN=8﹣4=4,∴C(3,4)代入y=得:k=1,答:k的值为1.(2)解:∵BC=BD=5,∴AD=6﹣5=1,设OA=a,则ON=a﹣4,C(3,a﹣4),D(1,a)∵点C、D在反比例函数的图象上,∴3(a﹣4)=1×a,解得:a=6,∴C(3,2)答:点C的坐标为(3,2)【点睛】本题主要考查反比例函数的几何应用,解题关键在于能够做出辅助线,利用勾股定理解题.21、(1)y=-x+1,y=x;(2)m=或;(3)S=.【解析】

(1)理由待定系数法即可解决问题;

(2)如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-|=3,解方程即可;

(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可.【详解】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=-x+1.

设直线OD的解析式为y=mx,则有3m=1,m=,

∴直线OD的解析式为y=x.(2)存在.

理由:如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,

∴|-m+1-|=3,

解得m=或.(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.

设O′C′与x轴交于点E,与直线OD交于点P;

设A′C′与x轴交于点F,与直线OD交于点Q.因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t,0),Q(1+t,),C′(1+t,3-t).

设直线O′C′的解析式为y=3x+b,

将C′(1+t,3-t)代入得:b=-1t,

∴直线O′C′的解析式为y=3x-1t.∴E(,0).

联立y=3x-1t与y=,解得x=.

∴S=S△OFQ-S△OEP=OF•FQ-OE•PG=(1+t)()-=.【点睛】本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.22、(1)见解析;(2)见解析.【解析】

(1)先由四边形ABCD是平行四边形,得出OA=OC,OB=OD,则OE=OF,又∵∠AOE=∠COF,利用SAS即可证明△AOE≌△COF;

(2)先证明四边形AGCH是平行四边形,再证明CG=AG,即可证明四边形AGCH是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵BE=DF,∴OE=OF.在△AOE与△COF中,∴△AOE≌△COF(SAS).(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF.又∵AH∥CG,∴四边形AGCH是平行四边形.∵AC平分∠HAG,∴∠HAC=∠GAC.∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG,∴□AGCH是菱形.【点睛】本题考查全等三角形的判定与性质,菱形的判定,难度适中,利用SAS证明△AOE≌△COF是解题关键.23、10cm【解析】

先有∠A=30°,那么∠ABC=60°,结合BD是角平分线,那么可求出∠DBC=∠ABD=30°,在Rt△DBC中,利用直角三角形中30°的角所对的直角边等于斜边的一半,可求出BD,再利用勾股定理可求BC,同理,在Rt△ABC中,AB=2BC,即可求AB.【详解】解:在Rt△ABC中,∠C=90°,∠A=∠30°,∴∠ABC=60°.∵BD是∠ABC的平分线,∴∠ABD=∠CBD=30°.∴∠ABD=∠BAD,∴AD=DB,在Rt△CBD中,CD=5cm,∠CBD=30°,∴BD=10cm.由勾股定理得,BC=5,∴AB=2BC=10cm.【点睛】本题利用了角平分线定义、直角三角形中30°的角所对的直角边等于斜边的一半、勾股定理等知识.24、问题背景:EF=BE+DF,理由见解析;探索延伸:结论仍然成立,理由见解析;实际应用:210海里.【解析】

问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;探索延伸:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;实际应用:连接EF,延长AE、BF相交于点C,然后与(2)同理可证.【详解】问题背景:EF=BE+DF,证明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF,故答案为EF=BE+DF;探索延伸:结论EF=BE+DF仍然成立,理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论