浙江省嘉兴市南湖区北师大南湖附校2024年八年级下册数学期末复习检测试题含解析_第1页
浙江省嘉兴市南湖区北师大南湖附校2024年八年级下册数学期末复习检测试题含解析_第2页
浙江省嘉兴市南湖区北师大南湖附校2024年八年级下册数学期末复习检测试题含解析_第3页
浙江省嘉兴市南湖区北师大南湖附校2024年八年级下册数学期末复习检测试题含解析_第4页
浙江省嘉兴市南湖区北师大南湖附校2024年八年级下册数学期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嘉兴市南湖区北师大南湖附校2024年八年级下册数学期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为()吨.每户节水量(单位:吨)11.21.5节水户数651520A.1 B.1.1 C.1.13 D.1.22.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第(7)个图案中阴影小三角形的个数是()A. B. C. D.3.化简的结果是()A.2 B. C. D.4.下列字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.5.如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点和A点重合,则EB的长是()A.3 B.4 C.5 D.56.关于的一元二次方程有两个相等的实数根,则的值()A.2 B.3 C. D.7.已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图像上,当x1<x2<0<x3时,y1、y2、y3的大小关系()A.y1<y3<y2 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y18.下列说法中,错误的是()A.两组对边分别相等的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有三条边相等的四边形是菱形D.对角线互相垂直的矩形是正方形9.下列调查中,适合采用普查的是()A.夏季冷饮市场上冰激凌的质量 B.某本书中的印刷错误C.《舌尖上的中国》第三季的收视率 D.公民保护环境的意识10.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y1<y211.点P(2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A.10 B.9 C.8 D.6二、填空题(每题4分,共24分)13.如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.14.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.15.函数的自变量的最大值是______.16.已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1,y2的大小关系为_________.17.若是一元二次方程的两个实数根,则=__________.18.如图,在菱形ABCD中,AC交BD于P,E为BC上一点,AE交BD于F,若AB=AE,,则下列结论:①AF=AP;②AE=FD;③BE=AF.正确的是______(填序号).三、解答题(共78分)19.(8分)解不等式组,并写出它的所有非负整数解.20.(8分)解方程:21.(8分)如图:是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①________②____________________________(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.22.(10分)如图,在平面直角坐标系中,是原点,的顶点、的坐标分别为、,反比例函数的图像经过点.(1)求点的坐标;(2)求的值.(3)将沿轴翻折,点落在点处.判断点是否落在反比例函数的图像上,请通过计算说明理由.23.(10分)某班级为奖励参加校运动会的运动员,分别用160元和120元购买了相同数量的甲、乙两种奖品,其中每件甲种奖品比每件乙种奖品贵4元.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.24.(10分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB为多少米?25.(12分)甲、乙两名自行车爱好者准备在段长为3500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系根据图中信息,回答下列问题:(1)乙的速度为多少米/秒;(2)当乙追上甲时,求乙距起点多少米;(3)求线段BC所在直线的函数关系式.26.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据加权平均数的公式进行计算即可得.【详解】=1.13(吨),所以这100户平均节约用水的吨数为1.13吨,故选C.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解题的关键.2、A【解析】

对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.【详解】解:由图可知:

第一个图案有阴影小三角形2个.

第二图案有阴影小三角形2+4=6个.

第三个图案有阴影小三角形2+8=10个,

那么第n个图案中就有阴影小三角形2+4(n-1)=4n-2个,

当n=7时,4n-2=4×7-2=26.

故选:A.【点睛】本题考查图形的变化规律,注意由特殊到一般的分析方法,此题的规律为:第n个图案中就有阴影小三角形4n-2个.3、D【解析】

直接利用二次根式的性质化简求出答案.【详解】解:.

故选:D.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4、A【解析】

根据中心对称图形及轴对称图形的概念即可解答.【详解】选项A是轴对称图形,也是中心对称图形;选项B是轴对称图形,不是中心对称图形;选项C不是轴对称图形,也不是中心对称图形;选项D不是轴对称图形,是中心对称图形.故选A.【点睛】本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.5、A【解析】设BE=x,则AE=EC=8-x,在RT△ABE中运用勾股定理可解出x的值,继而可得出EB的长度.解:设BE=x,则AE=EC=8-x,在RT△ABE中,AB2+BE2=AE2,即42+x2=(8-x)2,解得:x=1.即EB的长为1.故选A.本题考查了翻折变换的知识,解答本题需要在RT△ABE中利用勾股定理,关键是根据翻折的性质得到AE=EC这个条件.6、A【解析】

由方程有两个相等的实数根,可得出关于m的一元一次方程,解之即可得出结论.【详解】∵方程有两个相等的实数根,∴,解得:m=1.故选:A.【点睛】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.7、C【解析】

在反比例函数的图象在二四象限,根据x1<x2<0<x3,可以确定点(x1,y1)、(x2,y2)、(x3,y3)所在象限,根据反比例函数的图象和性质,可以确定y1、y2、y3的大小关系.【详解】∵反比例函数的图象在二、四象限,在每个象限内y随x的增大而增大,

又∵x1<x2<0<x3,∴点,和,在第二象限、而,在第四象限,

于是有:0<<,而<0,

因此,<<,

故选:C.【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特点,先根据题意判断出函数图象在二、四象限是解答此题的关键.8、C【解析】

分别利用平行四边形、矩形、菱形及正方形的判定方法对四个选项逐项判断即可.【详解】A.利用平行四边形的判定定理可知两组对边分别相等的四边形是平行四边形正确;B.利用矩形的判定定理可知有一个角是直角的平行四边形是矩形正确;C.根据四条边相等的四边形是菱形可知本选项错误;D.根据正方形的判定定理可知对角线互相垂直的矩形是正方形正确,故选C.【点睛】此题考查正方形的判定,平行四边形的判定,矩形的判定,解题关键在于掌握各性质定义.9、B【解析】分析:根据抽样调查和全面调查的意义解答即可.详解:A.调查夏季冷饮市场上冰激凌的质量具有破坏性,宜采用抽样调查;B.调查某本书中的印刷错误比较重要,宜采用普查;C.调查《舌尖上的中国》第三季的收视率工作量比较大,宜采用抽样调查;D.调查公民保护环境的意识工作量比较大,宜采用抽样调查;故选B.点睛:本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、B【解析】

先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.11、D【解析】

根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、B【解析】

作EF⊥BC于F,根据角平分线的性质可知EF=DE=3,即可求出△BCE的面积.【详解】作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=3,∴△BCE的面积=×BC×EF=9,故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质:角平分线上的点到角两边的距离相等是解答本题的关键.二、填空题(每题4分,共24分)13、【解析】

根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的长.【详解】解:∵将△CDP沿DP折叠,点C落在点E处,∴DC=DE=5,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE-EF=5-x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,∴AF=AB-BF=2+x.在Rt△DAF中,AF2+AD2=DF2,∴(2+x)2+32=(5-x)2,∴x=∴AF=2+=故答案为:【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14、1.【解析】

设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=-,即A点坐标为(-,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=-(-)=,∴S△ABC=•AB•OP=••b=1.15、1【解析】

根据二次根式的性质,被开方数大于等于0可知:1-x≥0,解得x的范围即可得出x的最大值.【详解】根据题意得:1-x≥0,解得:x≤1,∴自变量x的最大值是1,故答案为1.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数为非负数.16、y1>y2【解析】∵k=a<0,∴y随x的增大而减小.∵−4<2,∴y1>y2.故答案为y1>y2.17、-1【解析】

根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,∴x1+x2+x1x2=﹣1故答案为﹣1.【点睛】本题考查了根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.18、②③【解析】

根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.【详解】解:在菱形ABCD中,AC⊥BD,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.三、解答题(共78分)19、非负整数解是:0,1、1.【解析】

分别解出两不等式的解集再求其公共解.【详解】解:解不等式①,得x>-1.解不等式②,得.∴原不等式组的解集是.∴原不等式组的非负整数解为0,1,1.【点睛】错因分析

较易题.失分原因:①没有掌握一元一次不等式组的解法;②取非负整数解时多取或少取导致出错.20、x=2【解析】

解:两边同乘(x-4),得3-x+1=x-4x=2检验:当x=2时,x-4≠0∴x=2是原分式方程的解.21、(1)11;(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等;(3).【解析】试题分析:图象是分段函数,需要分别观察x轴y轴表示的意义,再利用图象过已知点,利用待定系数法求函数关系式.(1)由图知当行使8千米时,收费应为11元.(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等(3)设函数是y=kx+b(k图象过(3,5)(8,11),所以,解得,所以(x).22、(1);(2);(3)点不落在反比例函数图像上.【解析】

(1)根据平行四边形的性质,可得的坐标;(2)已知的坐标,可得的值;(3)根据图形全等和对称,可得坐标,代入反比例函数,可判断是否在图像上.【详解】解:(1)∵平行四边形,∴,∵的坐标为,∴,∵的坐标为,∴点的坐标为;(2)把的坐标代入函数解析式得:,∴.(3)点不落在反比例函数图像上;理由:根据题意得:的坐标为,当时,,∴点不落在反比例函数图像上.【点睛】本题综合考查平行四边形性质、反比例函数、图形翻折、全等等知识.23、问题:甲、乙两种奖品的单价分别是多少元?每件甲种奖品为16元,每件乙种奖品为12元.【解析】

首先提出问题,例如:甲、乙两种奖品的单价分别是多少元?然后根据本题的等量关系列出方程并求解。【详解】问题:甲、乙两种奖品的单价分别是多少元?解:设每件乙种奖品为x元,则每件甲种奖品为(x+4)元,列方程得:160x=120(x+4)x=12经检验,x=12是原分式方程的解。则:x+4=16答:每件甲种奖品为16元,每件乙种奖品为12元.【点睛】本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。24、1200米【解析】试题分析:由题可看出,A,B,C三点构成一个直角三角形,AB,BC为直角边,AC,是斜边,可设AB=X,AC=10+X因为BC=50根据勾股定理可知考点:勾股定理,三角函数的值点评:本题属于勾股定理的基本运算和求解方法,在解题中需要合理的作图25、(1)14;(2)乙距起点2100米;(3)BC所在直线的函数关系式为s=2t-300.【解析】

(1)设乙的速度为x米/秒,根据图象得到300+150×12=150x,解方程即可;(2)由图象可知乙用了150秒追上甲,用时间乘以速度即可;(3)先计算出乙完成全程所需要的时间为=250(秒),则乙追上甲后又用了250−150=100秒到达终点,所以这100秒他们相距100×(14−12)米,可得到C点坐标,而B点坐标为(150,0),然后利用待定系数法求线段BC所在直线的函数关系式即可.【详解】解:(1)设乙的速度为x米/秒,则300+150×12=150x,解得x=14,故答案为:14.(2)由图象可知乙用了150秒追上甲,14×150=2100(米).∴当乙追上甲吋,乙距起点2100米.(3)乙从出发到终点的时间为=250(秒),此时甲、乙的距离为:(250-150)(14-12)=200(米),∴C点坐标为(250,200),B点坐标为(150,0)设BC所在直线的函数关系式为s=kt+b(k0,k,b为常数),将B、C两点代入,得,解得∴BC所在直线的函数关系式为s=2t-300.【点睛】本题考查了一次函数的应用及待定系数法求一次函数的解析式:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论