2024届湖北省恩施市思源实验学校八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
2024届湖北省恩施市思源实验学校八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
2024届湖北省恩施市思源实验学校八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
2024届湖北省恩施市思源实验学校八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
2024届湖北省恩施市思源实验学校八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省恩施市思源实验学校八年级数学第二学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.式子的值()A.在2到3之间 B.在3到4之间 C.在4到5之间 D.等于342.下列计算中,正确的是().A. B.C. D.3.如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC4.下列有理式中,是分式的为()A. B. C. D.5.将直线y=x+1向右平移2个单位长度,可得直线的解析式为()A.y=x-3 B.y=x-1 C.y=x+3 D.y=x+16.如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5 B.6 C.8 D.107.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形8.下列因式分解错误的是()A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1) B.x2+2x+1=(x+1)2C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x+y)(x﹣y)9.分式,-,的最简公分母是(

)A.5abx B.5abx3 C.15abx D.15abx210.分式方程有增根,则的值为A.0和3 B.1 C.1和 D.3二、填空题(每小题3分,共24分)11.已知y=(k﹣1)x+k2﹣1是正比例函数,则k=_____.12.如图,在等腰直角ΔABC中,∠ACB=90°,BC=2,D是AB上一个动点,以DC为斜边作等腰直角ΔDCE,使点E和A位于CD两侧。点D从点A到点B的运动过程中,ΔDCE周长的最小值是13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_____.14.小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.15.已知关于x的方程x2+(3﹣2k)x+k2+1=0的两个实数根分别是x1、x2,当|x1|+|x2|=7时,那么k的值是__.16.已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为.17..若2m=3n,那么m︰n=.18.已知一次函数与反比例函数中,函数、与自变量x的部分对应值分别如表1.表2所示:则关于x的不等式的解集是__________。三、解答题(共66分)19.(10分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.20.(6分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.①若AE=6,DE=10,求AB的长;②若AB=BC=9,BE=3,求DE的长.21.(6分)计算(1)()2﹣(﹣)()(2)()﹣(﹣)22.(8分)计算(1);(2).23.(8分)分解因式(1)(2)24.(8分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为(分),所走的路程为(米),与之间的函数关系如图所示,(1)小明中途休息用了_______分钟.(2)小明在上述过程中所走的过程为________米(3)小明休息前爬山的平均速度和休息后爬山的平均速度各是多少?25.(10分)张明、王成两位同学在初二学年10次数学单元检测的成绩(成绩均为整数,且个位数为0)如图所示利用图中提供的信息,解答下列问题:(1)完成下表:姓名平均成绩中位数众数方差(s2)张明8080王成260(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率较高的同学是;(3)根据图表信息,请你对这两位同学各提出学习建议.26.(10分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.详解:∵,∴4<<5,故选C.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.2、B【解析】

根据二次根式的计算法则进行计算即可得出答案.【详解】解:A、,计算错误;B、计算正确;C、,计算错误;D、,计算正确;故选B.点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.3、B【解析】A.菱形的对边平行且相等,所以AB∥DC,故本选项正确;B.菱形的对角线不一定相等;C.菱形的对角线互相垂直,所以AC⊥BD,故本选项正确;D.菱形的对角线互相平分,所以OA=OC,故本选项正确.故选B.4、D【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:、、的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:D【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.5、B【解析】

平移时k的值不变,只有b发生变化,然后根据平移规律求解即可.【详解】解:直线y=x+1向右平移2个长度单位,则平移后所得的函数解析式是:y=x+1-2,即y=x-1.故选:B.【点睛】本题考查一次函数图像的平移.平移后解析式有这样一个规律“左加右减,上加下减”.6、A【解析】

已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.【详解】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=1.故选A.【点睛】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.7、D【解析】试题分析:A.平行四边形的对角线互相平分,说法正确;B.对角线互相平分的四边形是平行四边形,说法正确;C.菱形的对角线互相垂直,说法正确;D.对角线互相垂直的四边形是菱形,说法错误.故选D.考点:1.平行四边形的判定;2.菱形的判定.8、A【解析】

A、原式=(x﹣2)(2x﹣1),错误;B、原式=(x+1)2,正确;C、原式=xy(x﹣y),正确;D、原式=(x+y)(x﹣y),正确,故选A.9、D【解析】

求出ax,3b,5x2的最小公因式即可。【详解】解:由ax,3b,5x2得最小公因式为15abx2,故答案为D。【点睛】本题考查了最简公分母,即分母的最小公因式;其关键在于最小公因式,不仅最小,而且能被每一个分母整除。10、D【解析】

等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.【详解】∵分式方程-1=有增根,∴x﹣1=0,x+1=0,∴x1=1,x1=﹣1.两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,整理得,m=x+1,当x=1时,m=1+1=2;当x=﹣1时,m=﹣1+1=0,当m=0,方程无解,∴m=2.故选D.二、填空题(每小题3分,共24分)11、-1【解析】【分析】根据正比例函数的定义可知k-1≠0,常数项k2-1=0,由此即可求得答案.【详解】∵y=(k-1)x+k2-1是正比例函数,∴k-1≠0,k2-1=0,解得k≠1,k=±1,∴k=-1,故答案为-1.【点睛】本题考查了正比例函数的定义,熟知正比例函数y=kx中一次项系数中不为0,常数项等于0是解题的关键.12、2+【解析】

根据勾股定理得到DE=CE=22CD,求得△DCE周长=CD+CE+DE=(1+2)CD,当CD的值最小时,△DCE周长的值最小,当CD⊥AB时,CD的值最小,根据等腰直角三角形的性质即可得到结论【详解】解:∵△DCE是等腰直角三角形,

∴DE=CE=22CD,

∴△DCE周长=CD+CE+DE=(1+2)CD,

当CD的值最小时,△DCE周长的值最小,

∴当CD⊥AB时,CD的值最小,

∵在等腰直角△ABC中,∠ACB=90°,BC=2,

∴AB=2BC=22,

∴CD=12AB=2,

∴△DCE周长的最小值是2+2,

故答案为:2+【点睛】本题考查了轴对称——最短路线问题,等腰直角三角形,熟练掌握等腰直角三角形的性质是解题的关键.13、2【解析】

解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=1.∴△ABD的面积为×1×10=2.14、901【解析】

解:平均数=,方差=故答案为:90;1.15、﹣1.【解析】

先根据方程有两个实数根,确定△≥0,可得k≤,由x1•x1=k1+1>0,可知x1、x1,同号,分情况讨论即可.【详解】∵x1+(3﹣1k)x+k1+1=0的两个实数根分别是x1、x1,∴△=(3﹣1k)1﹣4×1×(k1+1)≥0,9﹣11k+4k1﹣4k1﹣4≥0,k≤,∵x1•x1=k1+1>0,∴x1、x1,同号,分两种情况:①当x1、x1同为正数时,x1+x1=7,即1k﹣3=7,k=5,∵k≤,∴k=5不符合题意,舍去,②当x1、x1同为负数时,x1+x1=﹣7,即1k﹣3=﹣7,k=﹣1,故答案为:﹣1.【点睛】本题考查了根与系数的关系和根的判别式.解此题时很多学生容易顺理成章的利用两根之积与和公式进行解答,解出k值,而忽略了限制性条件△≥0时k≤.16、y=﹣1x【解析】试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:∵正比例函数y=kx的图象经过点A(﹣1,1),∴﹣k=1,即k=﹣1.∴正比例函数的解析式为y=﹣1x.17、3︰2【解析】

根据比例的性质将式子变形即可.【详解】,,故答案为:3︰2点睛:此题考查比例的知识18、或【解析】

根据表格中的数据可以求得一次函数与反比例函数的解析式,从而可以得到不等式的解集,本题得以解决.【详解】解:∵点(-4,-1)和点(2,3)在一次函数y1=k1x+b的图象上,

∴,得,

即一次函数y1=x+3,

∵点(1,4)在反比例函数的图象上,

,得k2=4,

即反比例函数,

令x+3=,得x1=1,x2=-4,

∴不等式的解集是x>1或-4<x<2,

故答案为:x>1或-4<x<2.【点睛】本题考查反比例函数的性质、一次函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和一次函数的性质解答.三、解答题(共66分)19、(1)证明见解析;(2)EF-FG=-1.【解析】分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;(2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.20、(1)证明见解析;(2)成立;(3)①12;②7.1【解析】

(1)先判断出∠B=∠CDF,进而判断出△CBE≌△CDE,即可得出结论;(2)先判断出∠BCE=∠DCF,进而判断出∠ECF=∠BCD=90°,即可得出∠GCF=∠GCE=41°,得出△ECG≌△FCG即可得出结论;(3)先判断出矩形ABCH为正方形,进而得出AH=BC=AB,①根据勾股定理得,AD=8,由(1)(2)知,ED=BE+DH,设BE=x,进而表示出DH=10-x,用AH=AB建立方程即可得出结论;②由(1)(2)知,ED=BE+DH,设DE=a,进而表示出DH=a-3,AD=12-a,AE=6,根据勾股定理建立方程求解即可得出结论.【详解】解:(1)在正方形ABCD中,∵BC=CD,∠B=∠ADC,∴∠B=∠CDF,∵BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)成立,由(1)知,△CBF≌△CDE,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,∴∠ECF=∠BCD=90°,∵∠GCE=41°,∴∠GCF=∠GCE=41°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图2,过点C作CH⊥AD交AD的延长线于H,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠CHA=90°,∴四边形ABCH为矩形,∵AB=BC,∴矩形ABCH为正方形,∴AH=BC=AB,①∵AE=6,DE=10,根据勾股定理得,AD=8,∵∠DCE=41°,由(1)(2)知,ED=BE+DH,设BE=x,∴10+x=DH,∴DH=10-x,∵AH=AB,∴8+10-x=x+6,∴x=6,∴AB=12;②∵∠DCE=41°,由(1)(2)知,ED=BE+DH,设DE=a,∴a=3+DH,∴DH=a-3,∵AB=AH=9,∴AD=9-(a-3)=12-a,AE=AB-BE=6,根据勾股定理得,DE2=AD2+AE2,即:(12-a)2+62=a2,∴a=7.1,∴DE=7.1.【点睛】本题是四边形综合题,考查了矩形的判定,正方形的判定和性质,勾股定理,全等三角形的判定和性质,判断出△ECG≌△FCG是解本题的关键.21、(1)4+6(2)5-【解析】

(1)根据二次根式的运算法则计算即可.(2)根据二次根式的运算法则计算即可.【详解】(1)原式=2+4+6﹣(5﹣3)=2+4+6﹣2=4+6.(2)原式=2﹣﹣+3=5﹣.【点睛】本题考查二次根式的计算,熟练掌握二次根式的运算法则是解题关键.22、(1);(2).【解析】

(1)先根据二次根式的性质进行化简,再去括号进行运算,即可得到答案;(2)先根据二次根式的性质进行化简,进行运算,即可得到答案.【详解】(1)===2(2)==【点睛】本题考查二次根式的混合运算,解题的关键是先化简再进行计算.23、(1);(2)【解析】

(1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.【详解】解:(1)==(2)===【点睛】本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.24、(1)20;(2)3800;(3)小明休息前爬山的平均速度是70米/分,休息后爬山的平均速度是25米/分.【解析】

(1)从图像来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟;(2)根据图像可得小明所走的路程为3800米;(3)根据图像信息,即可求得小明休息前和休息后爬山的平均速度.【详解】(1)根据图像信息,可得小明在第40分钟时开始休息,第60分钟时结束休息,故中途休息用了20分钟;(2)根据图像,得小明所走的路程为3800米;(3)根据图像,得小明休息前爬山的平均速度是米/分,小明休息后爬山的平均速度是米/分.【点睛】此题主要考查一次函数的实际应用,熟练掌握,即可解题.25、(1)张明:平均成绩80,方,60;王成:平均成绩80,中位,85,众,90;(2)王成;(3)张明学习成绩还需提高,优秀率有待提高.【解析】

(1)根据平均数、中位数、众数、方差的概念以及求解方法分别求解,填

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论