版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京师范大附属中学2024年八年级数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如果,那么()A.a≥﹣2 B.﹣2≤a≤3C.a≥3 D.a为一切实数2.若a>b,则下列式子正确的是()A.a﹣4>b﹣3 B.a<b C.3+2a>3+2b D.﹣3a>﹣3b3.一元一次不等式组的解集在数轴上表示为().A. B.C. D.4.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.55.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<1;②a>1;③当x<4时,y1<y2;④b<1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个6.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.7.如图,图(1)、图(2)、图(3),图(4)分别由若干个点组成,照此规律,若图(n)中共有129个点,则()A.8 B.9 C.10 D.118.某种长途电话的收费方式为,接通电话的第一分钟收费a元,之后每一分钟收费b元,若某人打此种长途电话收费8元钱,则他的通话时间为A.分钟 B.分钟 C.分钟 D.分钟9.下列分解因式正确的是()A.-a+a3=-a(1+a2) B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2 D.a2-2a+1=(a-1)210.已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为()A.1 B.2 C.-2 D.-1二、填空题(每小题3分,共24分)11.在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点A作已知直线l的平行线”.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确”.请回答:小云的作图依据是____________.12.如图,在4×4方格纸中,小正方形的边长为1,点A,B,C在格点上,若△ABC的面积为2,则满足条件的点C的个数是_____.13.计算:=_______.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是______.15.将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.16.“绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x,则可列方程___.17.不等式组的解集是x>4,那么m的取值范围是_____.18.在弹性限度内,弹簧的长度是所挂物体质量的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为和,当所挂物体的质量为时弹簧长________厘米?三、解答题(共66分)19.(10分)某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示.已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.运动鞋价格甲乙进价元/双)mm-30售价(元/双)300200(1)求m的值;(2)要使购进的甲,乙两种运动鞋共200双的总利润不少于21700元且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店决定对甲种运动鞋每双优惠a(60<a<80)元出售,乙种运动鞋价格不变,那么该专卖店要获得最大利润应如何进货?20.(6分)已知,是等边三角形,是直线上一点,以为顶点做.交过且平行于的直线于,求证:;当为的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取的中点,连结,然后证明.从而得到,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:(2)如图3、当D在BC的延长线上时,求证:(3)当在的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).21.(6分)某校开展“涌读诗词经典,弘扬传统文化”诗词诵读活动,为了解八年级学生在这次活动中的诗词诵背情况,随机抽取了30名八年级学生,调查“一周诗词诵背数量”,调查结果如下表所示:一周诗词诵背数量(首)人数(人)(1)计算这人平均每人一周诵背诗词多少首;(2)该校八年级共有6名学生参加了这次活动,在这次活动中,估计八年级学生中一周诵背诗词首以上(含6首)的学生有多少人.22.(8分)(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240023.(8分)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1所示,∠APE=____________°②当BP=BC时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.24.(8分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.项目选择统计图训练后篮球定时定点投篮测试进球统计表进球数(个)876543人数214782请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比是___________,该班共有同学___________人;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.请求出参加训练之前的人均进球数.25.(10分)图①、图②、图③都是由8个大小完全相同的矩形拼成无重叠、无缝隙的图形,每个小矩形的顶点叫做格点,线段的端点都在格点上.仅用无刻度的直尺分别在下列方框内完成作图,保留作图痕迹.(1)在图①中,作线段的一条垂线,点、在格点上.(2)在图②、图③中,以为边,另外两个顶点在格点上,各画一个平行四边形,所画的两个平行四边形不完全重合.26.(10分)如图,正方形ABCD的顶点坐标分别为A(1,2),B(1,-2),C(5,-2),D(5,2),将正方形ABCD向左平移5个单位,作出它的图像,并写出图像的顶点坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
直接利用二次根式有意义的条件得出关于不等式组,解不等式组进而得到的取值范围.【详解】解:∵∴解得:故选:C【点睛】本题考查了二次根式有意义的条件以及解不等式组等知识点,能根据已知条件得到关于的不等式组是解题的关键.2、C【解析】
根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立.【详解】解:A、a>b⇒a﹣4>b﹣4或者a﹣3>b﹣3,故A选项错误;B、a>b⇒a>b,故B选项错误;C、a>b⇒2a>2b⇒3+2a>3+2b,故C选项正确;D、a>b⇒﹣3a<﹣3b,故D选项错误.故选C.考点:不等式的性质.3、A【解析】
根据不等式解集的表示方法即可判断.【详解】解:解不等式①得:x>-1,
解不等式②得:x≤2,
∴不等式组的解集是-1<x≤2,
表示在数轴上,如图所示:
.
故选:A.【点睛】此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.4、B【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.5、D【解析】
根据一次函数的性质对①②④进行判断;当x<4时,根据两函数图象的位置对③进行判断.【详解】解:根据图象y1=kx+b经过第一、二、四象限,∴k<1,b>1,故①正确,④错误;∵y2=x+a与y轴负半轴相交,∴a<1,故②错误;当x<4时图象y1在y2的上方,所以y1>y2,故③错误.所以正确的有①共1个.故选D.【点睛】此题主要考查了一次函数,以及一次函数与不等式,根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.6、D【解析】
根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解析】
仔细观察图形,找到图形的变化规律,利用规律求解.【详解】解:图(1)有1×2+2×1−1=3个点;图(2)有2×3+2×2−1=9个点;图(3)有3×4+2×3−1=17个点;图(4)有4×5+2×4−1=27个点;…∴图(n)有n×(n+1)+2×n−1=n2+3n−1个点;令n2+3n−1=129,解得:n=10或n=−13(舍去)故选:C.【点睛】本题考查了图形的变化类问题,是一道找规律的题目,这类题型在中考中经常出现,解题的关键是能够找到图形变化的规律,难度不大.8、C【解析】
解决此题要清楚一分钟收费a元,则一分钟后共打了分.再根据题意求出结果.【详解】首先表示一分钟后共打了分,则此人打长途电话的时间共是+1=分。故选C.【点睛】本题考查列代数式,根据题意列出正确的分式是解题关键.9、D【解析】
根据因式分解的定义进行分析.【详解】A、-a+a3=-a(1-a2)=-a(1+a)(1-a),故本选项错误;B、2a-4b+2=2(a-2b+1),故本选项错误;C、a2-4=(a-2)(a+2),故本选项错误;D、a2-2a+1=(a-1)2,故本选项正确.故选D.【点睛】考核知识点:因式分解.10、C【解析】
直接把点(1,-2)代入反比例函数y=即可得出结论.【详解】∵反比例函数y=的图象过点A(1,−2),∴−2=,解得k=−2.故选C.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式二、填空题(每小题3分,共24分)11、①四边相等的四边形是菱形②菱形的对边平行【解析】
利用作法可判定四边形ABCD为菱形,然后根据菱形的性质得到AD与l平行.【详解】由作法得BA=BC=AD=CD,所以四边形ABCD为菱形,所以AD∥BC,故答案为:四条边相等的四边形为菱形,菱形的对边平行.【点睛】本题考查了作图-复杂作图、菱形的判定与性质,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12、1.【解析】
根据三角形的面积公式,只要找出底乘以高等于4的点的位置即可.【详解】解:如图,点C的位置可以有1种情况.故答案为:1.【点睛】本题主要考查了勾股定理及三角形的面积,根据格点的情况,按照一定的位置查找,不要漏掉而导致出错.13、3【解析】
先把化成,然后再合并同类二次根式即可得解.【详解】原式=2.故答案为【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.14、【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:∵函数y=ax+b和y=kx的图象的交点P的坐标为(1,1),∴关于的二元一次方程组的解是.故答案为.【点睛】本题考查一次函数与二元一次方程组的关系,学生们认真认真分校即可.15、【解析】
先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.【详解】解:直线向右平移个单位后的解析式为,令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),所以直线与坐标轴所围成的三角形面积是.故答案为:.【点睛】本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.16、69.05%(1+x)2=72.75%【解析】
此题根据从2019年起每年的森林覆盖率年平均增长率为x,分别列出2020年以及2021年得森林覆盖面积,即可得出方程.【详解】∵设从2019年起每年的森林覆盖率年平均增长率为x,∴根据题意得:2020年覆盖率为:69.05%(1+x),2021年为:69.05%(1+x)²=72.75%,故答案为:69.05%(1+x)²=72.75%【点睛】此题考查一元二次方程的应用,解题关键在于列出方程17、m≤1【解析】
根据不等式组解集的求法解答.求不等式组的解集.【详解】不等式组的解集是x>1,得:m≤1.故答案为m≤1.【点睛】本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18、【解析】
设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.【详解】设y与x的函数关系式为y=kx+b,由题意,得:,解得:.故y与x之间的关系式为:y=x+14.1;当x=4时,y=0.1×4+14.1=16.1.故答案为:16.1【点睛】此题考查根据实际问题列一次函数关系式,解题关键在于列出方程三、解答题(共66分)19、(1)m=150;(2)该专卖店有9种进货方案;(3)此时应购进甲种运动鞋82双,购进乙种运动鞋118双.【解析】
(1)根据“用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同”列出方程并解答;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200−x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】(1)依题意得:,解得:m=150,经检验:m=150是原方程的根,∴m=150;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得:81≤x≤90,∵x为正整数,∴该专卖店有9种进货方案;(3)设总利润为W元,则W=(300﹣150﹣a)x+(200﹣120)(200﹣x)=(70﹣a)x+16000,①当60<a<70时,70﹣a>0,W随x的增大而增大,当x=90时,W有最大值,即此时应购进甲种运动鞋90双,购进乙种运动鞋110双;②当a=70时,70﹣a=0,W=16000,(2)中所有方案获利都一样;③当70<a<80时,70﹣a<0,W随x的增大而减小,当x=82时,W有最大值,即此时应购进甲种运动鞋82双,购进乙种运动鞋118双.【点睛】本题考查了一次函数的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系;解题时需要根据一次项系数的情况分情况讨论.20、(1)见解析;(2)见解析;(4)见解析,,仍成立【解析】
(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.【详解】(1)证明:在AB上截取AF=DC,连接FD,如图所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB∥CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB∥CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:AD=DE仍成立.理由如下:在AB的延长线上截取AF=DC,连接FD,如图所示:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC,∴BF=BD,∵∠DBF=∠ABC=60°,∴△BDF是等边三角形,∴∠AFD=60°,又∵AB∥CE,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,,∴△AFD≌△DCE(ASA),∴AD=DE.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.21、(1)5;(2)2640【解析】
(1)根据平均数定义求解;(2)用样本估计总体情况.【详解】(1)平均数:(首)(2)估计八年级学生中一周诵背诗词首以上(含6首)的学生有:6600=2640(人)答:这人平均每人一周诵背诗词5首;估计八年级学生中一周诵背诗词首以上(含6首)的学生有2640人.【点睛】考核知识点:平均数,用样本估计总体.理解题意是关键.22、(1)2000;(2)A型车17辆,B型车33辆【解析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程23、(1)①45;②不变化;(2)成立;(3)详见解析.【解析】
(1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证Rt△EAG≅Rt△EPF得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.【详解】解(1)①当点P与点B重合时,如图1-1所示:∵四边形ABCD是正方形,∴∠APE=45°②当BP=BC时,如图1-2所示,①中的结论不发生变化;故答案为:45°,不变化.(2)(2)如图2-1,如图2-2中,结论仍然成立;故答案为:成立;(3)证明一:如图所示.过点E作EF⊥BC于点F,EG⊥AB于点G.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BD平分∠ABC.∴EG=EF.∴RtΔEAG≌RtΔEPF.∴∠AEG=∠PEF.∵∠ABC=∠EFB=∠EGB=90°,∴∠GEF=∠GEP+∠PEF=90°.∴∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.∴∠APE=∠EAP=45°.证明二:如图所示.过点E作E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年食堂租赁及校园食品安全监督服务合同3篇
- 2024年酒店一次性用品采购与售后服务合同
- 2024年社保工伤赔偿合同3篇
- 2024年防盗门定制安装合同3篇
- 2024年高压设备安装工程标准协议模板
- 2024年简化版战略协作框架协议版B版
- 2024年电力企业战略合作协议3篇
- 2024年社区垃圾清理工坊
- 2024年金融理财产品销售代理合同模板3篇
- 2024苏州二手房买卖与家居绿化养护服务合同3篇
- 2024家庭户用光伏发电系统运行和维护规范
- 医疗机构强制报告制度
- 江苏省镇江市2023-2024学年高一上学期期末考试化学试题(解析版)
- 现场材料员述职报告
- 特种设备检验人员考核培训课件-安全意识培养与心理健康
- 00和值到27和值的算法书
- 总务工作总结和计划
- 护士条例与法律法规护理课件
- 老年人护理风险管理
- 蒸压加气混凝土制品课件
- 航空基础英语课件
评论
0/150
提交评论