新疆生产建设兵团二中学2024年八年级数学第二学期期末教学质量检测试题含解析_第1页
新疆生产建设兵团二中学2024年八年级数学第二学期期末教学质量检测试题含解析_第2页
新疆生产建设兵团二中学2024年八年级数学第二学期期末教学质量检测试题含解析_第3页
新疆生产建设兵团二中学2024年八年级数学第二学期期末教学质量检测试题含解析_第4页
新疆生产建设兵团二中学2024年八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆生产建设兵团二中学2024年八年级数学第二学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,AB=10,AD=12,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.8 B. C. D.62.某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的产量是()A.总体B.总体中的一个样本C.样本容量D.个体3.估计的结果在().A.8至9之间 B.9至10之间 C.10至11之间 D.11至12之间4.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个 B.2个 C.3个 D.4个5.如图,□ABCD中,E为BC边上一点,且AE交DC延长线于F,连接BF,下列关于面积的结论中错误的是()A.S△ABF=S△ADE B.S△ABF=S△ADFC.S△ABF=S□ABCD D.S△ADE=S□ABCD6.如图,直线y=k1x与直线y=k2x+b相交于点(1,﹣1),则不等式k1x<k2x+b的解集是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣17.若式子的值等于0,则x的值为()A.±2 B.-2 C.2 D.-48.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使ΔABC∽ΔPBD,则点P的位置应落在A.点上 B.点上 C.点上 D.点上9.已知m=,n=,则代数式的值为()A.3 B.3 C.5 D.910.下面计算正确的是()A. B. C. D.11.直线不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为()A.1cm2 B.2cm2 C.cm2 D.cm2二、填空题(每题4分,共24分)13.如图,中,D是AB的中点,则CD=__________.14.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S甲2=17,S乙2=1.则成绩比较稳定的是(填“甲”、“乙”中的一个).15.将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.16.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).17.在平面直角坐标系中,已知点,直线与线段有交点,则的取值范围为__________.18.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.三、解答题(共78分)19.(8分)已知:如图,在□ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE=BF.20.(8分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆,设租用甲种客车x辆.(1)用含x的式子填写下表:车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车___________________________(2)给出最节省费用的租车方案,并求出最低费用.21.(8分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)22.(10分)如图,在平面直角坐标系中,四边形为平行四边形,为坐标原点,,将平行四边形绕点逆时针旋转得到平行四边形,点在的延长线上,点落在轴正半轴上.(1)证明:是等边三角形:(2)平行四边形绕点逆时针旋转度.的对应线段为,点的对应点为①直线与轴交于点,若为等腰三角形,求点的坐标:②对角线在旋转过程中设点坐标为,当点到轴的距离大于或等于时,求的范围.23.(10分)在四边形ABCD中,AB//CD,∠B=∠D.(1)求证:四边形ABCD为平行四边形;(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.24.(10分)如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.25.(12分)如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由26.如图所示,的顶点在的网格中的格点上,画出绕点A逆时针旋转得到的;画出绕点A顺时针旋转得到的

参考答案一、选择题(每题4分,共48分)1、A【解析】

由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=12,∴BE=6,∴AE=,故选:A.【点睛】本题主要考查了平行四边形的性质,作图-轴对称变换,掌握平行四边形的性质,作图-轴对称变换是解题的关键.2、B【解析】试题解析:首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.4株葡萄的产量是样本.故选B.3、C【解析】

先把无理数式子进行化简,化简到6-3的形式,再根据2.236<,再根据不等式的性质求出6-3的范围.【详解】=,因为4.999696<因为2.236<,所以13.416<6,所以10.416<6.所以10至11之间.故选:C.【点睛】考查了无理数的估值,先求出无理数的范围是关键,在结合不等式的性质就可以求出6-3的范围.4、C【解析】

根据中心对称图形的概念求解.【详解】第一个,是中心对称图形,故选项正确;第二个,是中心对称图形,故选项正确;第三个,不是中心对称图形,故选项错误;第四个,是中心对称图形,故选项正确.故选C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、B【解析】

根据△ABF与△ABC等底同高,△ADE与△ADC等底同高,结合平行四边形的性质可得S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,问题得解.【详解】解:∵AB∥CD,AD∥BC,∴△ABF与△ABC等底同高,△ADE与△ADC等底同高∴S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,∴S△ABF=S△ADE,∴A,C,D正确;∵S△ADF=S△ADE+S△DEF,S△ABF=S△ADE,∴S△ADF>S△ABF,∴B不正确;故选B.【点睛】本题考查了平行四边形的性质、三角形面积的计算等知识,熟练掌握同底等高的三角形面积相等是解决问题的关键.6、A【解析】

由图象得到直线y=k1x与直线y=k2x+b相交于点(1,﹣1),观察直线y=k1x落在直线y=k2x+b的下方对应的x的取值即为所求.【详解】.解:∵直线y=k1x与直线y=k2x+b相交于点(1,﹣1),∴当x>1时,k1x<k2x+b,即k1x<k2x+b的解集为x>1,故选:A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7、C【解析】=0且x²+4x+4≠0,解得x=2.故选C.8、B【解析】

由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【详解】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=1,AC=1,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P1符合这样的要求,故P点应该在P1.

故选B.【点睛】此题考查了相似三角形的性质,以及勾股定理的运用,相似三角形的对应角相等,对应边成比例,书写相似三角形时,对应顶点要对应.熟练掌握相似三角形的性质是解本题的关键9、B【解析】

由已知可得:,=.【详解】由已知可得:,原式=故选:B【点睛】考核知识点:二次根式运算.配方是关键.10、B【解析】

根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A.3+不是同类项无法进行运算,故A选项错误;B.=3,故B选项正确;C.,故C选项错误;D.,故D选项错误;故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.11、C【解析】

首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【详解】∵y=-2x+3中,k=-2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.【点睛】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.12、D【解析】

根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.【详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又S△ABO2=S矩形,∴S2=S矩形==;,…,同理:设ABC5O5为平行四边形为S5,S5==.故选:D.【点睛】此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.二、填空题(每题4分,共24分)13、6.1【解析】

首先根据勾股定理求得AB=13,然后由“斜边上的中线等于斜边的一半”来求CD的长度.【详解】∵Rt△ABC中,,∴AB===13,∵D为AB的中点,∴CD=AB=6.1.故答案为:6.1.【点睛】本题考查了勾股定理和直角三角形斜边上的中线.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.14、乙.【解析】试题解析:∵S甲2=17,S乙2=1,1<17,∴成绩比较稳定的是乙.考点:方差.15、上1【解析】

根据“上加下减”的平移规律解答即可.【详解】解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,即y=3x,该函数图象经过原点.故答案为上,1.【点睛】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.16、随机【解析】

根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件【点睛】此题考查随机事件,难度不大17、【解析】

要使直线与线段AB交点,则首先当直线过A是求得k的最大值,当直线过B点时,k取得最小值.因此代入计算即可.【详解】解:当直线过A点时,解得当直线过B点时,解得所以要使直线与线段AB有交点,则故答案为:【点睛】本题主要考查正比例函数的与直线相交求解参数的问题,这类题型是考试的热点,应当熟练掌握.18、.【解析】

试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.三、解答题(共78分)19、证明见解析.【解析】

只要证明四边形DEBF是平行四边形即可解决问题.【详解】证明:∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥BE,又∵DE∥BF,∴四边形DEBF是平行四边形,∴DE=BF.【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.20、(1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元【解析】

(1)设租用甲种客车x辆,根据题意填表格即可.(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x+2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.【详解】解:(1)车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车8﹣x30(8﹣x)280(8﹣x)(2)当租用甲种客车x辆时,设租车的总费用为y元,则:y=400x+280(8﹣x)=120x+2240,又∵45x+30(8﹣x)≥330,解得x≥6,在函数y=120x+2240中,∵120>0,∴y随x的增大而增大,∴当x=6时,y取得最小值,最小值为2960.答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.【点睛】此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.21、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.【解析】试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.22、(1)见解析(2)①P(0,)或(0,-4)②-8≤m≤-或≤m≤1【解析】

(1)根据A点坐标求出∠AOF=60°,再根据旋转的特点得到AO=AF,故可求解;(2)①设P(0,a)根据等腰三角形的性质分AP=OP和AO=OP,分别求出P点坐标即可;②分旋转过程中在第三象限时到轴的距离等于与旋转到第四象限时到轴的距离等于,再求出当旋转180°时的坐标,即可得到m的取值.【详解】(1)如图,过A点作AH⊥x轴,∵∴OH=2,AH=2∴AO=故AO=2OH∴∠OAH=30°∴∠AOF=90°-∠OAH=60°∵旋转∴AO=AF∴△AOF是等边三角形;(2)①设P(0,a)∵是等腰三角形当AP=OP时,(2-0)2+(2-a)2=a2解得a=∴P(0,)当AO=OP时,OP=AO=4∴P(0,-4)故为等腰三角形时,求点的坐标是(0,)或(0,-4);②旋转过程中点的对应点为,当开始旋转,至到轴的距离等于时,m的取值为-8≤m≤-;当旋转到第四象限,到轴的距离等于时,m=当旋转180°时,设C’的坐标为(x,y)∵C、关于A点对称,∴解得∴(1,)∴m的取值为≤m≤1,综上,当点到轴的距离大于或等于时,求的范围是-8≤m≤-或≤m≤1.【点睛】此题主要考查旋转综合题,解题的关键是熟知等边三角形的判定、等腰三角形的性质、勾股定理、对称性的应用.23、(1)证明见解析;(2)证明见解析.【解析】

(1)根据平行线的性质和平行四边形的判定证明即可;(2)根据角平分线的性质和菱形的判定证明即可.【详解】(1)∵AB∥CD,∴∠DCA=∠BAC,在△ADC与△ABC中,,∴△ADC≌△CBA(AAS),∴AB=DC,∵AB∥CD,∴四边形ABCD为平行四边形;(2)∵四边形ABCD为平行四边形,∴∠DAB=∠DCB,∵PE⊥AB于E,PF⊥AD于F,且PE=PF,∴∠DAC=∠BAC=∠DCA=∠BCA,∴AB=BC,∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定与性质.菱形的判定方法有五多种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.24、(1)AP+PQ的最小值为1;(2)存在,M点坐标为(﹣12,﹣1)或(12,8).【解析】

(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=1,C点坐标为(1,1)DB=∠CEB=90,可知B、C、D、E四点共圆,由等腰直角△ABC可知∠CBD=15,同弧所对圆周角相等可知∠CED=15,所以∠OEF=15,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.(2)由直线l与直线AC成15可知∠AMN=15,由直线AC解析式可设M点坐标为(x,),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.【详解】解:(1)过A点作AK⊥CE,在等腰直角△ABC中,∠ACB=90,AC=BC,∵CE⊥x轴,∴∠ACK+∠ECB=90,∠ECB+∠CBE=90,∴∠ACK=∠CBE在△AKC和△CEB中,,△AKC≌△CEB(AAS)∴AK=CE,CK=BE,∵四边形AOEK是矩形,∴AO=EK=BE,由直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,可知A点坐标为(0,2),B(6,0)∴E点坐标为(1,0),C点坐标为(1,1),∵∠CDB=∠CEB=90,∴B、C、D、E四点共圆,∵,∠CBA=15,∴∠CED=15,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=1,∴AP+PQ≥1,∴AP+PQ的最小值为1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论