版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市天府新区2024届数学八年级下册期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列交通标志中、既是轴对称图形又是中心对称图形的是()A. B. C. D.2.在反比例函数y图象的每个象限内,y随x的增大而减少,则k值可以是()A.3 B.2 C.1 D.﹣13.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC4.已知点P(a,1)不在第一象限,则点Q(0,﹣a)在()A.x轴正半轴上 B.x轴负半轴上C.y轴正半轴或原点上 D.y轴负半轴上5.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形 B.圆 C.角 D.平行四边形6.已知两圆的半径R、r分别是方程x2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A.外离 B.相交 C.外切 D.内切7.如果直角三角形的边长为3,4,a,则a的值是()A.5 B.6 C. D.5或8.如图.在正方形中,为边的中点,为上的一个动点,则的最小值是()A. B. C. D.9.若关于的不等式组至少有四个整数解,且关于的分式方程的解为整数,则符合条件的所有整数有()A.3个 B.4个 C.5个 D.2个10.一次函数y=kx-(2-b)的图像如图所示,则k和b的取值范围是()A.k>0,b>2 B.k>0,b<2C.k<0,b>2 D.k<0,b<211.如图,一次函数和(,)在同一坐标系的图像,则的解中()A. B. C. D.12.如图,l1//l2,▱ABCD的顶点A在l1上,BC交l2于点E,若A.100∘ B.90∘ C.80二、填空题(每题4分,共24分)13.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_____个正方形.14.如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________.15.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是______________________________________.16.如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.17.如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.18.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.三、解答题(共78分)19.(8分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=1,O为AC的中点,OE⊥OD交AB于点E.若AE=,则DO的长为_____________.20.(8分)某校数学兴趣小组根据学习函数的经验,对函数y=|x|+1的图象和性质进行了探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:X…﹣4﹣3﹣2﹣101234…Y…32.5m1.511.522.53…(1)其中m=.(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)当2<y≤3时,x的取值范围为.21.(8分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.组别身高(cm)Ax<150B150≤x<155C155≤x<160D160≤x<165Ex≥165根据图表中提供的信息,回答下列问题:(1)女生身高在B组的有________人;(2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.22.(10分)在RtΔABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF//BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.23.(10分)已知:如图,在中,。(1)尺规作图:作线段的垂直平分线交于点,垂足为点,连接;(保留作图痕迹,不写作法);(2)求证:是等腰三角形。24.(10分)如图,直线的解析式为,与轴交于点,直线经过点(0,5),与直线交于点(﹣1,),且与轴交于点.(1)求点的坐标及直线的解析式;(2)求△的面积.25.(12分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.
(1)求直线BC的解析式;
(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;26.几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.方法2:如图②,取四边形四边的中点,,,,连接,,,,(2)求证:四边形是平行四边形;(3)请直接写出S四边形ABCD与之间的关系:_____________.方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.(5)求证:四边形是平行四边形.(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD=.(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形又是中心对称图形,故本选项正确;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:A.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.2、A【解析】
根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,则可得答案.【详解】根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,所以k>2,结合选项选择A.【点睛】本题考查反比例函数图象的性质,解题的关键是掌握反比例函数图象的性质.3、B【解析】分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.详解:添加的条件是AC=BD.理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.故选B.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.4、C【解析】
根据题意得出a的取值范围,进而得出答案.【详解】解:∵点P(a,1)不在第一象限,∴a≤0,则﹣a≥0,故点Q(0,﹣a)在:y轴正半轴上或原点.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5、B【解析】
根据轴对称图形与中心对称图形的概念逐项判断可得答案.【详解】解:A、三角形不一定是轴对称图形,不是中心对称图形,故本选项错误;
B、圆既是轴对称图形又是中心对称图形,故本选项正确;
C、角是轴对称图形,不一定是中心对称图形,故本选项错误;
D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、C【解析】
首先解方程x2-7x+10=0,求得两圆半径R、r的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【详解】解:∵x2-7x+10=0,
∴(x-2)(x-5)=0,
∴x1=2,x2=5,
即两圆半径R、r分别是2,5,
∵2+5=7,两圆的圆心距为7,
∴两圆的位置关系是外切.
故选:C.【点睛】本题考查圆与圆的位置关系与一元二次方程的解法,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解题的关键.7、D【解析】
分两种情况分析:a是斜边或直角边,根据勾股定理可得.【详解】解:当a是斜边时,a=;当a是直角边时,a=所以,a的值是5或故选:D.【点睛】本题考核知识点:勾股定理,解题关键点:分两种情况分析.8、A【解析】
根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.【详解】解:四边形为正方形关于的对称点为.连结交于点,如图:此时的值最小,即为的长.∵为中点,BC=4,∴BE=2,∴.故选:A.【点睛】本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.9、C【解析】
由不等式组至少有4个整数解,可得的取值范围,由方程的解是整数,可得的值,综合可得答案.【详解】解:因为由①得:,所以,由②得:<,即<,解得:>,又因为不等式组至少有4个整数解,所以,所以,又因为:,去分母得:,解得:,而方程的解为整数,所以,所以的值可以为:,综上的值可以为:,故选C.【点睛】本题考查不等式组的整数解的问题,方程的整数解问题,都是初中数学学习的难点,关键是理解题意,其中不等式组的整数解利用数轴得到范围是解题关键.10、B【解析】
根据一次函数的图象经过一、三、四象限列出b的不等式,求出b及k的取值范围即可.【详解】∵一次函数y=kx-(1-b)的图象经过一、三、四象限,∴k>0,-(1-b)<0,解得b<1.故选B.【点睛】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.11、A【解析】
方程组的解就是一次函数y1=ax+b和y2=-bx+a(a≠0,b≠0)图象的交点,根据交点所在象限确定m、n的取值范围.【详解】解:方程组的解就是一次函数y1=ax+b和y2=-bx+a(a≠0,b≠0)图象的交点,∵两函数图象交点在第一象限,∴m>0,n>0,故选:A.【点睛】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.12、B【解析】
由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.【详解】解:∵四边形ABCD是平行四边形,
∴∠BAD=∠C=100°,AD∥BC,
∴∠2=∠ADE,
∵l1∥l2,
∴∠ADE+∠BAD+∠1=180°,
∴∠1+∠2=180°-∠BAD=80°;
故选:C.【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.二、填空题(每题4分,共24分)13、1【解析】
观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)个正方形从而得到答案.【详解】解:∵第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…∴第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1),∴第4幅图中有12+22+32+42=1个正方形.故答案为1.【点睛】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.14、【解析】
首先根据等边三角形的性质可得AB'=AE=EB',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,,再证明∠B'AC=90°,再证得S△AEC=S△AEB',再求S△AB'C进而可得答案.【详解】解:∵为等边三角形,∴AB'=AE=EB',∠B'=∠B'EA=60°,
根据折叠的性质,∠BCA=∠B'CA,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,AB=CD,
∴∠B'EA=∠B'CB,∠EAC=∠BCA,
∴∠ECA=∠BCA=30°,∴∠EAC=30°,
∴∠B'AC=90°,
∵,
∴B'C=8,∴AC==,
∵B'E=AE=EC,∴S△AEC=S△AEB'=S△AB'C=××4×=,故答案为.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.15、对角线互相垂直平分的四边形是菱形【解析】
解:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.所以小明这样折叠的依据是:对角线互相垂直平分的四边形是菱形.16、8【解析】
先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.【详解】∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=3,∵∠BAD=90°,AD=BC=6,AB=8,∴BD=10,又∵E是BD的中点,∴Rt△ABD中,AE=BD=5,∴AE+EF=5+3=8,故答案为:8【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.17、1【解析】分析:根据题意容易得到△CDE∽△CBA,再根据相似三角形的性质解答即可.详解:由题意可得:AB=1.5m,BC=2m,DC=12m,
△ABC∽△EDC,
则,
即,
解得:DE=1,
故答案为1.点睛:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程.18、三角形的中位线等于第三边的一半【解析】∵D,E分别是AC,BC的中点,
∴DE是△ABC的中位线,
∴DE=AB,
设DE=a,则AB=2a,故答案是:三角形的中位线等于第三边的一半.三、解答题(共78分)19、【解析】
求出△DAO≌△EBO,推出OD=OE,AD=BE,求出AD=BE=,由勾股定理得出DE2=DO2+OE2=AD2+AE2,求出即可.【详解】连结DE,如图,∵∠ABC=90°,O为AC的中点,∴∠CAB=∠ACB=45°,∠ABO=45°,AO=BO=CO,∠AOB=90°,∵OE⊥OD,∴∠DOE=∠AOB=90°,∴∠DOA=∠BOE=90°-∠AOE,∵AD∥BC,∴∠DAB=180°-∠ABC=90°,∴∠DAO=90°-45°=45°,∴∠DAO=∠OBE,在△DAO和△EBO中∴△DAO≌△EBO(ASA),∴OD=OE,AD=BE,∵AB=1,AE=,∴AD=BE=1-=,在Rt△DAE和Rt△DOE中,由勾股定理得:DE2=DO2+OE2=AD2+AE2,∴2DO2=()2+()2,DO=,故答案为:.【点睛】本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,解此题的关键是求出OD=OE,AD=BE,题目比较好,难度适中.20、(1)2;(2)见解析;(3)﹣1≤x<﹣2或2<x≤1【解析】
(1)依据在y=|x|+1中,令x=﹣2,则y=2,可得m的值;(2)将图中的各点用平滑的曲线连接,即可画出该函数的图象;(3)依据函数图象,即可得到当2<y≤3时,x的取值范围.【详解】(1)在y=|x|+1中,令x=﹣2,则y=2,∴m=2,故答案为2;(2)如图所示:(3)由图可得,当2<y≤3时,x的取值范围为﹣1≤x<﹣2或2<x≤1.故答案为﹣1≤x<﹣2或2<x≤1.【点睛】本题考查了一次函数的图象与性质以及一次函数图象上点的坐标特征,根据题意画出图形,利用数形结合思想是解题的关键.21、(1)12;(2)16;C;(3)541人.【解析】
先计算出B组所占百分之再求即可将位于这一小组内的频数相加即可求得结果;分别计算男、女生的人数,相加即可得解.【详解】解:(1)女生身高在B组的人数有40×(1−30%−20%−15%−5%)=12人;(2)在样本中,身高在150⩽x<155之间的人数共有4+12=16人,身高人数最多的在C组;(3)500×+480×(30%+15%)=541(人).答:估计身高在155≤x<165之间的学生约有541人.【点睛】本题主要考查从统计图表中获取信息,解题的关键是要读懂统计图.22、(1)见解析;(2)见解析【解析】
(1)根据已知条件易证ΔAFE≅ΔDBE,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得AF=CD,利用一组对边平行且相等的四边形为平行四边形,证得四边形ADCF是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得AD=12BC=DC,由一组邻边相等的平行四边形为菱形即可判定四边形【详解】(1)证明:如图,∵AF//BC,∴∠AFE=∠DBE,∵ΔABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD,在ΔAFE和ΔDBE中,∠AFE=∠DBE∠FEA=∠BED∴ΔAFE≅ΔDBE;∴AF=BD.(2)由(1)知,AF=BD∵BD=CD,∴AF=CD,∵AF//BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=1∴四边形ADCF是菱形.【点睛】本题考查全等三角形的判定与性质、平行四边形的判定、菱形的判定及直角三角形斜边的中线等于斜边的一半的性质,熟练运用相关知识是解决问题的关键.23、(1)见解析;(2)是等腰三角形,见解析.【解析】
(1)根据垂直平分线的作法作出AB的垂直平分线交BC于点D,垂足为F,再连接AD即可求解;
(2)根据等腰三角形的性质和线段垂直平分线的性质得到∠1=∠C=∠B=36°,再根据三角形内角和定理和三角形外角的性质得到∠DAC=∠ADC,再根据等腰三角形的判定即可求解.【详解】解:(1)如图,作出的垂直平分线,连接,(2)∵,∴,∴,∵是的垂直平分线,∴,∴,∴,∴,∴,∴是等腰三角形.【点睛】本题考查了作图-复杂作图,涉及的知识点有:垂直平分线的作法,等腰三角形的性质,线段垂直平分线的性质得,三角形内角和定理,三角形外角的性质以及等腰三角形的判定等.24、(1);(2).【解析】
(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【详解】(1)∵直线:经过点(﹣1,),∴=1+2=3,∴C(﹣1,3),设直线的解析式为,∵经过点(0,5),(﹣1,3),∴,解得:∴直线的解析式为;(2)当=0时,2+5=0,解得,则(,0),当=0时,﹣+2=0解得=2,则(2,0),∴.【点睛】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.25、(1)BC的解析式是y=−x+3;(2)当0<t⩽2时,S=−3t+6;当t>2时,S=3t−6.【解析】
(1)令y=0,即可求得A的坐标,根据OC=3OA即可求得C的坐标,再根据∠CBA=45°,即△BOC的等腰直角三角形,则B的坐标即可求得,然后利用待定系数法求得BC的解析式;
(2)分成P在AB和在AB的延长线上两种情况进行讨论,利用三角形面积公式即可求解.【详解】(1)在y=kx+k中,令y=0,则x=−1,即A的坐标是(−1,0).
∵OC=3OA,
∴OC=3,即C的坐标是(0,3).
∵∠CBA=45∘,
∴∠OCB=∠CBA=45∘,
∴OB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《家庭护士》课件
- 2023-2024学年福建省福州市福清市高一(下)期中地理试卷
- 高速公路施工总承包合同段春节节后复工工作计划及保障措施
- 2024年山东省日照市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年福建省福州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年四川省眉山市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年贵州省安顺市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 湖南省张家界市(2024年-2025年小学六年级语文)部编版摸底考试(上学期)试卷及答案
- 2024年ATM机项目资金需求报告代可行性研究报告
- 2025年PS铝合金板项目立项申请报告模板
- 西方古代国家定义的历史流变
- 针对行政拘留的行政复议申请书
- 三相同步发电机的基本工作原理
- 青年干部成长成才成功
- GB/T 29636-2023疑似毒品中甲基苯丙胺检验
- 2023年全国中小学思政课教师网络培训研修总结心得体会
- 老年人能力评估标准表
- 卷内目录及卷内备考表
- 国开大学2023年01月11110《工程地质》期末考试答案
- 2023春国家开放大学-02272数据结构(本)-期末考试题带答案
- 模拟电子技术课程设计报告
评论
0/150
提交评论