版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年陕西省西安市高新第二初级中学数学八年级下册期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:;;;,从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.2种 B.3种 C.4种 D.5种2.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)3.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5) B.(﹣,0),(0,5) C.(,0),(0,﹣5) D.(﹣,0),(0,﹣5)4.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的角平分线AF与AB的垂直平分线DF交于点F,连接CF,BF,则∠BCF的度数为()A.30° B.40° C.50° D.45°5.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A. B.C. D.6.一次函数y=5x-4的图象经过().A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限7.已知点的坐标是,点与点关于轴对称,则点的坐标为()A. B. C. D.8.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=139.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012﹣2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥4810.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣5二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,点,过点作的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交轴于点……按此规律继续作下去,直至得到点为止,则点的坐标为_________.12.若关于x的分式方程产生增根,则m=_____.13.若是一个完全平方式,则的值等于_________.14.已知,,则的值为___________.15.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.16.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E,若AB=8,AD=6,则EC=_____________.17.若关于y的一元二次方程y2﹣4y+k+3=﹣2y+4有实根,则k的取值范围是_____.18.若,则=______.三、解答题(共66分)19.(10分)已知关于x的一元二次方程的两个实数根为x1、x2且x1+2x2=9,求m的值.20.(6分)《九章算术》卷九中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少?21.(6分)如图,在直角坐标系中,直线与轴分别交于点、点,直线交于点,是直线上一动点,且在点的上方,设点.(1)当四边形的面积为38时,求点的坐标,此时在轴上有一点,在轴上找一点,使得最大,求出的最大值以及此时点坐标;(2)在第(1)问条件下,直线左右平移,平移的距离为.平移后直线上点,点的对应点分别为点、点,当为等腰三角形时,直接写出的值.22.(8分)解不等式组23.(8分)如图,正方形中,经顺时针旋转后与重合.(1)旋转中心是点,旋转了度;(2)如果,,求的长.24.(8分)已知正比例函数与反比例函数.(1)证明:直线与双曲线没有交点;(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时25.(10分)(1)解不等式组:.(2)解方程:.26.(10分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取900°;而乙同学说,θ也能取800°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了540°,用列方程的方法确定x.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.2、C【解析】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直线CD′的解析式为y=﹣x﹣1.令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.3、A【解析】
分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标.【详解】令,则,解得,故此直线与轴的交点的坐标为;令,则,故此直线与轴的交点的坐标为.故选:.【点睛】本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.4、B【解析】
根据线段垂直平分线的意义得FA=FB,由∠BAC=50°,得出∠ABC=∠ACB=65°,由角平分线的性质推知∠BAF=25°,∠FBE=40°,延长AF交BC于点E,AE⊥BC,根据等腰三角形的“三线合一”的性质得出:∠BFE=50°,∠CFE=50°,即可解出∠BCF的度数.【详解】延长∠BAC的角平分线AF交BC于点E,
∵AF与AB的垂直平分线DF交于点F,
∴FA=FB,
∵AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°
∴∠BAF=25°,∠FBE=40°,
∴AE⊥BC,
∴∠CFE=∠BFE=50°,
∴∠BCF=∠FBE=40°.
故选:B.【点睛】本题主要考查了等腰三角形的性质和线段垂直平分线的性质,熟练掌握性质的内容是解答本题的关键.5、C【解析】
根据平移的性质,利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离,然后比较它们的大小即可.【详解】A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,故选C.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.解决本题的关键是利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离.6、C【解析】
根据一次函数的性质结合k、b的值即可确定答案.【详解】∵k=5>0,∴一次函数y=5x-4的图象经过第一、三象限,∵b=-4<0,∴一次函数y=5x-4的图象与y轴的交点在x轴下方,∴一次函数y=5x-4的图象经过第一、三、四象限,故选C.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7、B【解析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点A关于y轴对称的点的坐标是B,故选:B.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.8、B【解析】
根据勾股定理进行判断即可得到答案.【详解】A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理.9、A【解析】这个队在将要举行的比赛中胜x场,则要输(32﹣x)场,胜场得分2x分,输场得分(32﹣x)分,根据胜场得分+输场得分≥48可得不等式.解:这个队在将要举行的比赛中胜x场,则要输(32﹣x)场,由题意得:2x+(32﹣x)≥48,故选A.10、A【解析】
分三种情形讨论求解即可解决问题;【详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【点睛】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、【解析】
分别写出、、的坐标找到变化规律后写出答案即可.【详解】解:、,,的坐标为:,同理可得:的坐标为:,的坐标为:,,点横坐标为,即:,点坐标为,,故答案为:,.【点睛】本题考查了规律型问题,解题的关键是根据点的坐标的变化得到规律,利用得到的规律解题.12、1【解析】
方程两边都乘以化为整式方程,表示出方程的解,依据增根为,即可求出的值.【详解】解:方程去分母得:,解得:,由方程有增根,得到,则的值为1.故答案为:1.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13、【解析】
根据完全平方公式的特点即可求解.【详解】∵是完全平方式,即为,∴.故答案为.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.14、1【解析】
将写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵,,∴,故答案为:1.【点睛】本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.15、1.【解析】试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.考点:关于y轴对称16、【解析】
连接EA,如图,利用基本作图得到MN垂直平分AC,所以EC=EA,设CE=x,则AE=x,DE=8-x,根据勾股定理得到62+(8-x)2=x2,然后解方程求出x即可.【详解】解:连接EA,如图,由作图得到MN垂直平分AC,∴EC=EA,∵四边形ABCD为矩形,∴CD=AB=8,∠D=90°,设CE=x,则AE=x,DE=8-x,在Rt△ADE中,62+(8-x)2=x2,解得x=,即CE的长为.故答案为.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.17、【解析】
首先把方程化为一般形式,再根据方程有实根可得△=,再代入a、b、c的值再解不等式即可.【详解】解:y2﹣4y+k+3=﹣2y+4,化为一般式得:,再根据方程有实根可得:△=,则,解得:;∴则k的取值范围是:.故答案为:.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.18、1【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案【详解】∵∴∴∴故答案为1.【点睛】本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.三、解答题(共66分)19、【解析】【分析】由根与系数的关系可得,x1x2=-m2,再根据x1+2x2=9可求出x1、x2的值,代入x1x2=-m2即可求得m的值.【详解】由根与系数可知:,x1x2=-m2,解方程组,得:,∴x1x2=-5,即,∴.【点睛】本题考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.一元二次方程根与系数的关系:若x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,则有x1+x2=,x1x2=.20、绳索长为尺.【解析】
设绳索长为x尺,则根据题意可得斜边为x,直角边分别是8和x-3的直角三角形,然后运用勾股定理列方程解答即可.【详解】解:设绳索长为尺,根据题意得:答:绳索长为尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题21、(1)点D的坐标为(﹣2,10),点M的坐标为(0,)时,|ME﹣MD|取最大值2;(2)当△A′B′D为等腰三角形时,t的值为﹣2﹣4、4、﹣2+4或1【解析】
(1)将x=-2代入直线AB解析式中即可求出点C的坐标,利用分割图形求面积法结合四边形AOBD的面积为38即可得出关于m的一元一次方程,解之即可得出m值,在x轴负半轴上找出点E关于y轴对称的点E′(-8,0),连接E′D并延长交y轴于点M,连接DM,根据三角形三边关系即可得出此时|ME-MD|最大,最大值为线段DE′的长度,由点D、E′的坐标利用待定系数法即可求出直线DE′的解析式,将x=0代入其中即可得出此时点M的坐标,再根据两点间的距离公式求出线段DE′的长度即可;
(2)根据平移的性质找出平移后点A′、B′的坐标,结合点D的坐标利用两点间的距离公式即可找出B′D、A′B′、A′D的长度,再根据等腰三角形的性质即可得出关于t的方程,解之即可得出t值,此题得解.【详解】(1)当x=﹣2时,y=,∴C(﹣2,),∴S四边形AOBD=S△ABD+S△AOB=CD•(xA﹣xB)+OA•OB=3m+8=38,解得:m=10,∴当四边形AOBD的面积为38时,点D的坐标为(﹣2,10).在x轴负半轴上找出点E关于y轴对称的点E′(﹣8,0),连接E′D并延长交y轴于点M,连接DM,此时|ME﹣MD|最大,最大值为线段DE′的长度,如图1所示.DE′=.设直线DE′的解析式为y=kx+b(k≠0),将D(﹣2,10)、E′(﹣8,0)代入y=kx+b,,解得:,∴直线DE′的解析式为y=x+,∴点M的坐标为(0,).故当点M的坐标为(0,)时,|ME﹣MD|取最大值2.(2)∵A(0,8),B(﹣6,0),∴点A′的坐标为(t,8),点B′的坐标为(t﹣6,0),∵点D(﹣2,10),∴B′D=,A′B′==10,A′D=.△A′B′D为等腰三角形分三种情况:①当B′D=A′D时,有=,解得:t=1;②当B′D=A′B′时,有=10,解得:t=4;③当A′B′=A′D时,有10=,解得:t1=﹣2﹣4(舍去),t2=﹣2+4.综上所述:当△A′B′D为等腰三角形时,t的值为﹣2﹣4、4、﹣2+4或1.【点睛】考查了一次函数的综合应用、待定系数法求一次函数解析式、三角形的面积、一次函数图象上点的坐标特征、等腰三角形的性质以及两点间的距离公式,解题的关键是:(1)找出|ME-MD|取最大值时,点M的位置;(2)根据等腰三角形的性质找出关于t的方程.22、﹣1≤x<2【解析】
首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.【详解】解不等式①,得:x<2,解不等式②,得:x≥﹣1,所以不等式组的解集为﹣1≤x<2,将不等式组的解集表示在数轴上如下:【点睛】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23、(1)A,90;(2).【解析】
(1)根据正方形的性质得AB=AD,∠BAD=90°,则根据旋转的定义得到△ADE绕点A顺时针旋转90°后与△ABF重合;
(2)根据旋转的性质得BF=DE,S△ABF=S△ADE,利用CF=CB+BF=8得到BC+DE=8,再加上CE=CD-DE=BC-DE=4,于是可计算出BC=6,于是得到结论.【详解】解:(1)∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴△ADE绕点A顺时针旋转90°后与△ABF重合,
即旋转中心是点A,旋转了90度;
故答案为A,90;
(2)∵△ADE绕点A顺时针旋转90°后与△ABF重合,
∴BF=DE,S△ABF=S△ADE,
而CF=CB+BF=8,
∴BC+DE=8,
∵CE=CD-DE=BC-DE=4,
∴BC=6,
∴AC=BC=6.故答案为(1)A,90;(2).【点睛】本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.旋转有三要素:旋转中心;旋转方向;旋转角度.也考查了正方形的性质.24、(1)方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点);(2)当时,当时,;(3)当或时满足.【解析】
(1)将和这两函数看成两个不定方程,联立方程组,整理后得方程,再利用根的判别式得出这个方程无解,所以两函数图象没有交点;(2)向上平移4个单位后,联立方程组,整理后得方程,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可使用合同(图书出版)
- 2024中国建材集团总部招聘1人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国化学工程重型机械化限公司招聘30人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度企业设备进口与代理销售合同
- 2024年度瓷砖供应商合同5篇
- 《伟大的悲剧》课件
- 柏城站12月业务考试
- 电脑印刷第二单元(多选)
- 《钢结构规范新》课件
- 2024年度虚拟现实内容制作与体验合作合同
- 锅炉浇注料施工方案
- 矿山地质环境保护与治理恢复方案(技术标)投标文件
- 七年级动点问题大全给力教育课资
- 农村土地承包法解说PPT课件
- 中国宏观经济形势分析框架PPT课件
- 儿童英文自我介绍课件PPT
- 厂房、设施、设备维护保养计划(完整版)
- 供应商冲突矿产调查表填写说明[沐风教学]
- 人教中职数学球PPT学习教案
- [QC成果]户外主变安装防坠落悬挂装置的研制范本
- 技工院校安全管理工作总结
评论
0/150
提交评论