葫芦岛市重点中学2024年八年级下册数学期末预测试题含解析_第1页
葫芦岛市重点中学2024年八年级下册数学期末预测试题含解析_第2页
葫芦岛市重点中学2024年八年级下册数学期末预测试题含解析_第3页
葫芦岛市重点中学2024年八年级下册数学期末预测试题含解析_第4页
葫芦岛市重点中学2024年八年级下册数学期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

葫芦岛市重点中学2024年八年级下册数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,已知P、R分别是四边形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么EF的长()A.逐渐增大 B.逐渐变小C.不变 D.先增大,后变小2.若a<0,b>0,则化简的结果为()A. B. C. D.3.如图,△ABC称为第1个三角形,它的周长是1,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,以此类推,则第2019个三角形的周长为()A. B. C. D.4.函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>25.如图,在中,,垂足为,,,则的长为()A. B. C. D.6.下列各命题是假命题的是()A.平行四边形的对角相等 B.四条边都相等的四边形是菱形C.正方形的两条对角线互相垂直 D.矩形的两条对角线互相垂直7.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.8.六边形的内角和为()A.720° B.360° C.540° D.180°9.顺次连接一个四边形的各边中点,得到了一个正方形,这个四边形最可能是()A.正方形 B.矩形 C.菱形 D.平行四边形10.下列事件中,属于随机事件的是()A.没有水分,种子发芽; B.小张买了一张彩票中500万大奖;C.抛一枚骰子,正面向上的点数是7; D.367人中至少有2人的生日相同.二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.12.如图,菱形ABCD的两条对角线AC,四交于点O,若AC=6,BD=4,则菱形13.某商场品牌手机经过5、6月份连续两次降价,每部售价由5000元降到4050元,设平均每次降价的百分率为x,根据题意可列方程:_____.14.已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是.15.已知线段a,b,c能组成直角三角形,若a=3,b=4,则c=_____.16.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.17.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)18.如图,正比例函数和一次函数的图像相交于点A(2,1).当x>2时,_____________________.(填“>”或“<”)三、解答题(共66分)19.(10分)如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;20.(6分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(6分)如图,平行四边形中,对角线和相交于点,且(1)求证:;(2)若,求的长.22.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数y=x的图象交于点C(m,4).(1)求m的值及一次函数y=kx+b的表达式;(2)观察函数图象,直接写出关于x的不等式x<kx+b的解集.23.(8分)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,字形是非常重要的基本图形,可以建立如下的“模块”(如图①):.(1)请就图①证明上述“模块”的合理性;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点,点在直线上运动,若,求此时点的坐标;②如图③,过点作轴与轴的平行线,交直线于点,求点关于直线的对称点的坐标.24.(8分)某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定,现从两家提供的样品中各抽取了6件进行检查,超过标准质量部分记为正数,不足部分记为负数,若该皮具的标准质量为500克,测得它们质量如下(单位:g)厂家超过标准质量的部分甲﹣300120乙﹣21﹣1011(1)分别计算甲、乙两厂抽样检测的皮具总质量各是多少克?(2)通过计算,你认为哪一家生产皮具的质量比较稳定?25.(10分)如图,已知点A在反比例函数(x>0)的图像上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图像经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是,求一次函数y=kx+b的表达式.26.(10分)数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,ΔBMP是什么三角形?请证明你的结论;(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?(3)设矩形ABCD的边AB=2   ,   BC=4,并建立如图3所示的直角坐标系.设直线BM'为y=kx,当∠M'BC=60°时,求k的值.此时,将ΔABM'沿BM'折叠,点A`是否落在EF上(E、

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据三角形的中位线的定理,首先表示EF的长度,再根据AR是定值,从而可得EF是定值.【详解】解:∵E、F分别是PA、PR的中点,∴EF=AR,∴EF的长不变,故选:C.【点睛】本题主要考查三角形的中位线的性质,关键在于表示变化的直线.2、B【解析】

根据二次根式的性质化简即可.【详解】解:由于a<0,b>0,∴ab<0,∴原式=|ab|=−ab,故选:B.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,属于基础题型.3、B【解析】

根据三角形的中位线等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半,然后根据指数的变化规律求解即可.【详解】解:根据三角形中位线定理可得第2个三角形的各边长都等于第1个三角形各边的一半,∵第1个三角形的周长是1,∴第2个三角形的周长=第1个三角形的周长1×=,第3个三角形的周长为=第2个三角形的周长×=()²,第4个三角形的周长为=第3个三角形的周长()²×=()³,…∴第2019个三角形的周长═()2018=.故选B.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并判断出后一个三角形的周长等于上一个三角形的周长的一半是解题的关键.4、A【解析】

根据分母不为0列式求值即可.【详解】由题意得x﹣1≠0,解得:x≠1.故选:A.【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.5、A【解析】

根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.【详解】由题意知,,∴∠ADC=∠BDC=90°,∠A=∠BCD,∴△ACD∽△CBD,∴,即,∵,,∴CD=4,故选:A.【点睛】本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.6、D【解析】

利于平行四边形的性质、菱形的判定定理、正方形的性质及矩形的性质分别判断后即可确定正确的选项.【详解】A.平行四边形的对角相等,正确,为真命题;B.四条边都相等的四边形是菱形,正确,是真命题;C.正方形的两条对角线互相垂直,正确,为真命题;D.矩形的两条对角线相等但不一定垂直,故错误,为假命题,故选D.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.7、B【解析】

解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.8、A【解析】

根据多边形内角和公式,即可求出.【详解】根据多边形内角和公式,六边形内角和故选A.【点睛】本题考查多边形内角和问题,熟练掌握公式是解题关键.9、A【解析】

利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【详解】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.

∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.

∴EF=EH,EF⊥EH,

∵BD=2EF,AC=2EH,

∴AC=BD,AC⊥BD,

即四边形ABCD满足对角线相等且垂直,

选项A满足题意.

故选:A.【点睛】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.10、B【解析】A选项中,因为“没有水分,种子发芽”是“确定事件中的不可能事件”,所以不能选A;B选项中,因为“小张买了一张彩票中500万大奖”是“随机事件”,所以可以选B;C选项中,因为“抛一枚骰子,正面向上的点数是7”是“确定事件中的不可能事件”,所以不能选C;D选项中,因为“367人中至少有2人的生日相同”是“确定事件中的必然事件”,所以不能选D.故选B.二、填空题(每小题3分,共24分)11、1【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.【详解】解:易证△AFD′≌△CFB,

∴D′F=BF,

设D′F=x,则AF=16-x,

在Rt△AFD′中,(16-x)2=x2+82,

解之得:x=6,

∴AF=AB-FB=16-6=10,故答案为:1.【点睛】本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.12、4【解析】

首先根据菱形的性质可知菱形的对角线垂直平分,然后在Rt△AOD中利用勾股定理求出AD的长,再由菱形的四边形相等,可得菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AO=12AC=3,DO=12在Rt△AOD中,AD=AO∴菱形ABCD的周长为413.故答案为:413.【点睛】本题考查了菱形的性质以及勾股定理的知识,解答本题的关键是掌握菱形的对角线互相垂直且平分以及勾股定理等知识.13、5000(1﹣x)2=1【解析】

根据现在售价5000元月平均下降率现在价格1元,即可列出方程.【详解】解:设平均每次降价的百分率为x,根据题意可列方程:5000(1﹣x)2=1.故答案为:5000(1﹣x)2=1.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.14、【解析】

解:如图,取AB的中点D,连接OD、CD,∵正三角形ABC的边长为a,,在△ODC中,OD+CD>OC,∴当O、D、C三点共线时OC最长,最大值为.15、5或【解析】

由于没有指明斜边与直角边,因此要分4为斜边与4为直角边两种情况来求解.【详解】分两种情况,当4为直角边时,c为斜边,c==5;当长4的边为斜边时,c==,故答案为:5或.【点睛】本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.16、24【解析】

设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.【详解】设其余两边长分别为、,由勾股定理得,,整理得,,解得,(舍去),,则其余两边长分别为、,则这个三角形的周长.故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.17、①③④【解析】

根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30~40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确,综上可得①③④正确.18、>【解析】

根据图像即可判断.【详解】解:∵点A(2,1)∴x>2在A点右侧,由图像可知:此时>.故答案为>【点睛】此题考查的是比较一次函数的函数值,结合图像比较一次函数的函数值是解决此题的关键.三、解答题(共66分)19、(1).(2)能.当时.【解析】

(1)利用勾股定理,根据题意求出PB和BQ的长,再由PB和BQ可以求得PQ的长;(2)由题意可知P、Q两点是逆时针运动,则第一次形成等腰三角形是PB=QB,再列式即可得出答案.【详解】(1)由题意可得,,因为t=2,所以,,则由勾股定理可得.(2)能.由题意可得,,又因为题意可知P、Q两点是逆时针运动,则第一次第一次形成等腰三角形是PB=QB,所以,即当时,第一次形成等腰三角形.【点睛】本题考查勾股定理、等腰三角形的性质和动点问题,属于综合题,难度适中,解题的关键是熟练掌握勾股定理、等腰三角形的性质.20、(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【解析】

(1)根据网格结构找出点A、B、C关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;

(2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B的对应点的坐标;

(3)分AB、BC、AC是平行四边形的对角线三种情况解答.【详解】解:(1)如图所示△A′B′C′即为所求;

(2)如图所示,△A''B''(3)D(-7,3)或(-5,-3)或(3,3).

当以BC为对角线时,点D3的坐标为(-5,-3);

当以AB为对角线时,点D2的坐标为(-7,3);

当以AC为对角线时,点D1坐标为(3,3).【点睛】本题考查了利用旋转变换作图,平行四边形的对边相等,熟记性质以及网格结构准确找出对应点的位置是解题的关键.21、(1)详见解析;(2)【解析】

(1)先证明AC=BD,再证明平行四边形ABCD是矩形即可得到答案;(2)证明△AOD为等边三角形,再运用勾股定理求解即可.【详解】证明:在平行四边形中,,又,四边形是矩形解:四边形是矩形.,又是等边三角形,,在中,【点睛】本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.22、(1)一次函数的表达式为;(2)x<3【解析】

(1)首先利用待定系数法把C(m,4)代入正比例函数y=x中,计算出m的值,进而得到C点坐标,再利用待定系数法把A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值,进而得到一次函数解析式.(2)根据函数图像直接写出答案即可.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴•m,m=3即点C坐标为(3,4).∵一次函数y=kx+b经过A(﹣3,0)、点C(3,4)∴,解得:,∴一次函数的表达式为;(2)由图象可得不等式x<kx+b的解为:x<3【点睛】此题主要考查了正比例函数图像上点的坐标特征,利用图像解不等式,待定系数法求一次函数解析式等知识,根据待定系数法把A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值是解题关键.23、(1)见解析;(2)①;②【解析】

(1)根据余角的性质就可以求出∠B=∠DCE,再由∠A=∠D=90°,就可以得出结论;(2)①作AG⊥x轴于点G,BH⊥x轴于点H,可以得出△AGO∽△OHB,可以得出,设点B的坐标为(x,-2x+1),建立方程求出其解就可以得出结论;②过点E作EN⊥AC的延长线于点N,过点D作DM⊥NE的延长线于点M,设E(x,y),先可以求出C、D的坐标,进而可以求出DM=x+2,ME=7-y,CN=x-1,EN=y-1,DE=AD=6,CE=AC=1.再由条件可以求出△DME∽△ENC,利用相似三角形的性质建立方程组求出其解就可以得出结论.【详解】(1)证明:∵∠BCE=90°,∴∠ACB+∠DCE=90°.∵∠A=90°,∴∠ACB+∠B=90°,∴∠DCE=∠B.∵∠A=∠D,∴△ABC∽△DCE;(2)①解:作轴,轴.,∴∴,∵点B在直线y=-2x+1上,∴设点B的坐标为(x,-2x+1),∴OH=x,BH=-2x+1,∴,,,则,∴;②解:过点作轴,作,延长交于.∵A(-2,1),∴C点的纵坐标为1,D点的横坐标为-2,设C(m,1),D(-2,n),∴1=-2m+1,n=-2×(-2)+1,∴m=1,n=7,∴C(1,1),D(-2,7).设.,∴.,,代入得方程组为:,解之得:..【点睛】本题是一道一次函数的综合试题,考查了相似三角形的判定及性质的运用,轴对称的性质的运用,方程组的运用,解答时灵活运用相似三角形的性质是关键.24、(1)甲厂抽样检测的皮具总质量为3000克,乙厂抽样检测的皮具总质量为3000克;(2)乙公司生产皮具的质量比较稳定.【解析】

(1)求出记录的质量总和,再加上标准质量即可;(2)以标准质量为基准,根据方差的定义求出两公司的方差,相比即可.【详解】解:(1)甲厂抽样检测的皮具总质量为500×6+(﹣3+0+0+1+2+0)=3000(克),乙厂抽样检测的皮具总质量为500×6+(﹣2+1﹣1+0+1+1)=3000(克);(2)∵=×(﹣3+0+0+1+2+0)=0,∴=×[(﹣3﹣0)2+(0﹣0)2×3+(1﹣0)2+(2﹣0)2]≈2.33,∵=×(﹣2+1﹣1+0+1+1)=0,∴=×[(﹣2﹣0)2+3×(1﹣0)2+(﹣1﹣0)2+(0﹣0)2]≈1.33,∵<,∴乙公司生产皮具的质量比较稳定.【点睛】本题主要考查了方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.25、(1);(2)y=+2【解析】

(1)由AC=OC,设A(m,m)代入反比例函数得m2=9,求出A点坐标;(2)利用四边形ABOC的面积求出B点坐标,再用待定系数法确定函数关系式即可求出AB的解析式.【详解】(1)∵AC=OC∴可设A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论