淄博市重点中学2024届数学八年级下册期末综合测试试题含解析_第1页
淄博市重点中学2024届数学八年级下册期末综合测试试题含解析_第2页
淄博市重点中学2024届数学八年级下册期末综合测试试题含解析_第3页
淄博市重点中学2024届数学八年级下册期末综合测试试题含解析_第4页
淄博市重点中学2024届数学八年级下册期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

淄博市重点中学2024届数学八年级下册期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是()A.AD=BC B.AC=BDC.AB∥CD D.∠BAC=∠DCA2.在平面直角坐标系中,点(4,﹣3)关于y轴对称的点的坐标是()A.(﹣4,﹣3) B.(4,3) C.(﹣4,3) D.(4,﹣3)3.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是()A.6 B.5 C.4 D.34.如图,⊙O的直径AB,C,D是⊙O上的两点,若∠ADC=20°,则∠CAB的度数为()A.40° B.80° C.70° D.50°5.下列图案中既是中心对称图形,又是轴对称图形的是()A. B.C. D.6.如图,已知直线11:y=﹣x+4与直线l2:y=3x+b相交于点P,点P的横坐标是2,则不等式﹣x+4≤3x+b的解集是()A.x<2 B.x>2 C.x≤2 D.x≥27.若式子有意义,则实数的取值范围是()A.且 B. C. D.8.八(1)班班长统计2017年5~12月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制出如下折线统计图,下列说法不正确的是()A.众数是58 B.平均数是50C.中位数是58 D.每月阅读数量超过40本的有6个月9.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16crn B.14cm C.12cm D.8cm10.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45° B.15° C.10° D.125°二、填空题(每小题3分,共24分)11.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm和165cm之间的学生大约有_______人.12.如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边的中点,连接EF,若EF=,BD=4,则菱形ABCD的边长为__________.13.在函数y=中,自变量x的取值范围是_____.14.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.15.如图,已知双曲线y=kx(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=_____16.已知一组数据,,的方差为4,那么数据,,的方差是___________.17.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.18.若直角三角形的斜边长为6,则这个直角三角形斜边的中线长________.三、解答题(共66分)19.(10分)用无刻度的直尺绘图.(1)如图1,在中,AC为对角线,AC=BC,AE是△ABC的中线.画出△ABC的高CH(2)如图2,在直角梯形中,,AC为对角线,AC=BC,画出△ABC的高CH.20.(6分)如图,一张矩形纸片.点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点分别落在点处,(1)若,则的度数为°;(2)若,求的长.21.(6分)如图,平行四边形ABCD的边OA在x轴上,将平行四边形沿对角线AC对折,AO的对应线段为AD,且点D,C,O在同一条直线上,AD与BC交于点E.(1)求证:△ABC≌△CDA.(2)若直线AB的函数表达式为,求三角线ACE的面积.22.(8分)如图,在平面直角坐标系中,直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,l2交x轴于点A,点P是直线l1上一动点,过点P作PQ∥y轴交l2于点Q(1)求出点A的坐标;(2)连接AP,当△APQ为以PQ为底边的等腰三角形时,求点P和点Q的坐标;(3)点B为OA的中点,连接OQ、BQ,若点P在y轴的左侧,M为直线y=﹣1上一动点,当△PQM与△BOQ全等时,求点M的坐标.23.(8分)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.24.(8分)因式分解:(1);(2).25.(10分)某中学开展“我的中国梦”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级5名选手的复赛成绩波动小?26.(10分)阅读下列一段文字,然后回答下列问题.已知在平面内有两点、,其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为或.(1)已知、,试求A、B两点间的距离______.已知M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M、N两点的距离为______;(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标及的最短长度.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.故选B.2、A【解析】试题解析:点(4,﹣3)关于y轴的对称点的坐标是(﹣4,﹣3),故选A.3、C【解析】

根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:,是的中点,.故选:.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.4、C【解析】

先根据圆周角定理的推论得出∠ACB=90°,然后根据圆周角定理得到∠D=∠B,最后利用∠CAB=90°-∠B即可求解.【详解】∵AB是直径,∴∠ACB=90°,∵∠D=∠B=20°,∴∠CAB=90°-∠B=90°﹣20°=70°.故选:C.【点睛】本题主要考查圆周角定理及其推论,直角三角形两锐角互余,掌握圆周角定理及其推论是解题的关键.5、C【解析】判断轴对称的关键是寻找对称轴,两边图象折叠后可重合,判断中心对称是要寻找对称中心,旋转180度后重合A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选C.6、D【解析】

利用函数图象,写出直线l1不在直线l1上方所对应的自变量的范围即可.【详解】解:如图:当x≥1时,﹣x+4≤3x+b,所以不等式﹣x+4≤3x+b的解集为x≥1.故选:D.【点睛】此题考查不等式与一次函数的关系,数形结合即可求解.7、A【解析】

根据分式及二次根式的性质即可求解.【详解】依题意得x≥0,x-2≠0,故且选A.【点睛】此题主要考查分式有意义的条件,解题的关键是熟知二次根式的性质及分母不为零.8、B【解析】

根据众数的定义,可判断A;根据平均数的计算方法,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.【详解】A.出现次数最多的是58,众数是58,故A正确;B.平均数为:,故B错误;C.由小到大顺序排列数据28,36,42,58,58,70,75,83,中位数是=58,故C正确;D.由折线统计图看出每月阅读量超过40本的有6个月,故D正确;故选:B【点睛】此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据.9、D【解析】∵平行四边形ABCD的周长为40cm,,∴AB=CD,AD=BC,AB+BC+CD+AD=40cm,∴2(AB+BC)=40,∵BC=AB,∴BC=8cm,故选D.10、A【解析】

由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.【详解】是等边三角形,,,四边形是正方形,,,,,,.

故选:.【点睛】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.二、填空题(每小题3分,共24分)11、1【解析】

根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数【详解】解:由题意可知:150名样本中160~165的人数为30人,则其频率为,则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.12、【解析】

先根据三角形中位线定理求AC的长,再由菱形的性质求出OA,OB的长,根据勾股定理求出AB的长即可.【详解】∵E、F分别是AB、BC边的中点,∴EF是△ABC的中位线∵EF=,∴AC=2.∵四边形ABCD是菱形,BD=4,∴AC⊥BD,OA=AC=,OB=BD=2,∴.故答案为:.【点睛】此题考查菱形的性质、三角形中位线定理,解题关键在于熟练运用利用菱形的性质.13、x≥﹣2且x≠1【解析】分析:根据使分式和二次根式有意义的条件进行分析解答即可.详解:∵要使y=有意义,∴,解得:且.故答案为:且.点睛:熟记:“二次根式有意义的条件是:被开方数是非负数;分式有意义的条件是:分母的值不为0”是正确解答本题的关键.14、2【解析】

由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB=x,则AF=x,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.【详解】由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.设AB=x,则AF=x,AC=x+1.∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.∵ABCD是矩形,∴CD=AB=2.故答案为:2.【点睛】本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.15、2【解析】解:过D点作DE⊥x轴,垂足为E,∵Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,∵△OED∽△OAB,∴两三角形的相似比为,∵双曲线,可知,,由,得,解得16、4【解析】

设数据,,的平均数为m,据此可得数据a+2,b+2,c+2的平均数为m+2,然后根据方差公式进行计算即可得.【详解】设数据,,的平均数为m,则有a+b+c=3m,=4,∴a+2,b+2,c+2的平均数为(a+2+b+2+c+2)÷3=(3m+6)÷3=m+2,方差为:==4,故答案为:4.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.17、1【解析】试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.解:∵四边形ABCD是平行四边形,AC=12,∴OA=AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB===10,∴BD=2OB=1.故答案为:1.18、1【解析】

根据直角三角形的性质直接求解.【详解】解:直角三角形斜边长为6,这个直角三角形斜边上的中线长为1.故答案为:1.【点睛】本题考查了直角三角形的性质,解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.三、解答题(共66分)19、见解析.【解析】

(1)根据AC=BC得出△ABC为等腰三角形,连接BD,因为ABCD为平行四边形,所以AC与BD交点即为两条线段中点,可得出△ABC中AC边上的中线,再根据三角形三条中线交于一点,连接BD与AE的交点和C点并延长,交AB于点H,此时CH为△ACB的AB边上的中线,因为三线合一,所以可得CH是△ABC的AB边上的高线;(2)因为ABCD为直角梯形,所以∠DAB=90°,延长BC、AD交于点E,因为AC=BC,可得∠CAB=∠CBA,根据△EAB为直角三角形易证AC=CB=CE,可得C为BE中点,再根据∠CDA=90°,易证D为AE中点,根据三角形三条中线交于一点,连接E与AC、BD交点并延长交AB于点H,可得点H为AB中点,连接CH,CH为△ACB中AB边上的中线,根据三线合一可得,CH为△ACB中AB边上的高.【详解】解:如图所示.(1)连接BD交AE于点F,连接CF并延长交AB于点H,此时CH即为所求线段;(2)延长BC、AD交于点E,连接BD交AC于点F,连接EF并延长交AB于点H,再连接CH,此时CH即为所求线段.【点睛】本题考查无刻度尺的作图方法,注意利用题中已知条件,想要做等腰三角形底边上的中线,可利用等腰三角形三线合一的性质,再利用题中已知的中线,根据三角形三条中线交于一点来画图.20、(1);(2)1【解析】

(1)根据折叠可得∠BFG=∠GFB′,再根据矩形的性质可得∠DFC=40°,从而∠BFG=70°即可得到结论;(2)首先求出GD=9-=,由矩形的性质得出AD∥BC,BC=AD=9,由平行线的性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三角形的判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不变性,可知FB′=FB,由此即可解决问题.【详解】(1)根据折叠可得∠BFG=∠GFB′,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,∠ADF=∠DFC,∵∴∠DFC=40°∴∠BFD=140°∴∠BFG=70°∴∠DGF=70°;(2)∵AG=,AD=9,∴GD=9-=,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:,∴BF=BC-CF=9-,由翻折不变性可知,FB=FB′=,∴B′D=DF-FB′=-=1.【点睛】本题是四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.21、(1)证明见详解;(2)【解析】

(1)利用平行四边形的性质及折叠的性质,可得出CD=AB,∠DCA=∠BAC,结合AC=CA可证出△ABC≌△CDA(SAS);

(2)由点D,C,O在同一直线上可得出∠DCA=∠OCA=90°,利用一次函数图象上点的坐标特征可得出点A的坐标及OA的长度,由OC∥AB可得出直线OC的解析式为y=x,进而可得出∠COA=45°,结合∠OCA=90°可得出△AOC为等腰直角三角形,利用等腰直角三角形的性质可得出OC、AC的长,结合(1)的结论可得出四边形ABDC为正方形,再利用正方形的面积公式结合S△ACE=S正方形ABDC可求出△ACE的面积.【详解】(1)证明:∵四边形ABCO为平行四边形,

∴AB=CO,AB∥OC,

∴∠BAC=∠OCA.

由折叠可知:CD=CO,∠DCA=∠OCA,

∴CD=AB,∠DCA=∠BAC.

在△ABC和△CDA中,,∴△ABC≌△CDA(SAS).(2)解:∵∠DCA=∠OCA,点D,C,O在同一直线上,∴∠DCA=∠OCA=90°.

当y=0时,x-1=0,解得:x=1,

∴点A的坐标为(1,0),OA=1.

∵OC∥AB,

∴直线OC的解析式为y=x,

∴∠COA=45°,

∴△AOC为等腰直角三角形,

∴AC=OC=.

∵AB∥CD,AB=CD=AC,∠DCA=90°,

∴四边形ABDC为正方形,【点睛】本题考查了平行四边形的性质、折叠的性质、全等三角形的判定、等腰直角三角形、一次函数图象上点的坐标特征以及正方形的面积,解题的关键是:(1)利用全等三角形的判定定理SAS证出△ABC≌△CDA;(2)利用一次函数图象上点的坐标特征及等腰直角三角形的性质,求出正方形边长AC的长.22、(1)A(2,0);(2)P(3,),Q(3,﹣);(3)M(﹣1,﹣1)或(﹣1,8)【解析】

(1)求出直线l2的解析式为y=﹣x+1,即可求A的坐标;(2)设点P(x,﹣x+2),Q(x,﹣x+1),由AQ=AP,即可求P点坐标;(3)设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),可求出BQ=,OQ=,PM=,QM=,①当△PQM≌△BOQ时,PM=BQ,QM=OQ,结合勾股定理,求出m;②当△QPM≌△BOQ时,有PM=OQ,QM=BQ,结合勾股定理,求出m即可.【详解】解:(1)∵直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,∴直线l2的解析式为y=﹣x+1,∵l2交x轴于点A,∴A(2,0);(2)当△APQ为以PQ为底边的等腰三角形时,∴AQ=AP,∵点P是直线l1上一动点,设点P(x,﹣x+2),∵过点P作PQ∥y轴交l2于点Q∴Q(x,﹣x+1),∴(﹣x+2)2=(﹣x+1)2,∴x=3,∴P(3,),Q(3,﹣);(3)∵点B为OA的中点,∴B(1,0),∴PQ=BO=1,设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),∴BQ=,OQ=,PM=,QM=,①∵△PQM与△BOQ全等,①当△PQM≌△BOQ时,有PM=BQ,QM=OQ,=,=,∴n=2m﹣2,∵点P在y轴的左侧,∴n<0,∴m<1,∴m=﹣1,∴M(﹣1,﹣1);②当△QPM≌△BOQ时,有PM=OQ,QM=BQ,=,=,∴n=﹣m,∵点P在y轴的左侧,∴n<0,∴m>2,∴m=8,∴M(﹣1,8);综上所述,M(﹣1,﹣1)或M(﹣1,8).1:y=﹣x+2向下平移1个单位后,得到直线l2,【点睛】本题考查一次函数的综合;熟练掌握一次函数的图象特点,等腰三角形与全等三角形的性质是解题的关键.23、(1)k=;(2)解析式为y=2x﹣2.【解析】试题分析:(1)根据L1⊥L2,则k1·k2=﹣1,可得出k的值即可;(2)根据直线互相垂直,则k1·k2=﹣1,可得出过点A直线的k等于2,得出所求的解析式即可.试题解析:解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+2垂直,∴设过点A直线的直线解析式为y=2x+b,把A(2,2)代入得,b=﹣2,∴解析式为y=2x﹣2.24、(1);(2)【解析】

(1)先提取公因式-x,再用完全平方公式分解即可;(2)先提取公因式3x,再用完全平方公式分解即可.【详解】解:(1)==;(2)==【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25、(1)九(1)班成绩的平均数为85,方差为70;九(2)班成绩的平均数为85,方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论