版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省齐齐哈尔市龙江县2024年八年级下册数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,矩形纸片ABCD中,BC=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则ΔABC的面积为(A.16cm2 B.20cm22.点P(1,a),Q(﹣2,b)是一次函数y=kx+1(k<0)图象上两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能确定3.若二次根式在实数范围内有意义,则a的取值范围是()A. B. C.a>1 D.a<14.在“爱我汾阳”演讲赛中,小明和其他6名选手参加决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名同学成绩的()A.平均数 B.众数 C.中位数 D.方差5.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16crn B.14cm C.12cm D.8cm6.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:;;;,从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.2种 B.3种 C.4种 D.5种7.如图,在正方形中,,是正方形的外角,是的角平分线上任意一点,则的面积等于()A.1 B. C.2 D.无法确定8.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子(x>0)的最小值是1”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是1();当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长1()=4最小,因此(x>0)的最小值是1.模仿张华的推导,你求得式子(x>0)的最小值是()A.1 B.1 C.6 D.109.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形10.如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是()A.0 B.1 C.3 D.411.若函数的解析式为y=,则当x=2时对应的函数值是()A.4 B.3 C.2 D.012.“古诗•送郎从军:送郎一路雨飞池,十里江亭折柳枝;离人远影疾行去,归来梦醒度相思.”中,如果用纵轴y表示从军者与送别者行进中离原地的距离,用横轴x表示送别进行的时间,从军者的图象为O→A→B→C,送别者的图象为O→A→B→D,那么下面的图象与上述诗的含义大致吻合的是()A. B. C. D.二、填空题(每题4分,共24分)13.对于平面直角坐标系中的点,给出如下定义:记点到轴的距离为,到轴的距离为,若,则称为点的最大距离;若,则称为点的最大距离.例如:点到到轴的距离为4,到轴的距离为3,因为,所以点的最大距离为4.若点在直线上,且点的最大距离为5,则点的坐标是_____.14.如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.15.如图,在▱ABCD中,已知AD=9cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=______cm.16.若关于的一次函数(为常数)中,随的增大而减小,则的取值范围是____.17.在平面直角坐标系xOy中,已知点A1,1,B-1,1,如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为_____.三、解答题(共78分)19.(8分)我们把对角线互相垂直的四边形叫做垂美四边形.(1)(概念理解)在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是___________.(2)(性质探究)如图2,试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,写出证明过程。(3)(问题解决)如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外做正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=,BC=1求GE的长.20.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.21.(8分)如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之间的距离.22.(10分)某商场计划购进一批自行车.男式自行车价格为元/辆,女式自行车价格为元/辆,要求男式自行车比女式单车多辆,设购进女式自行车辆,购置总费用为元.(1)求购置总费用(元)与女式单车(辆)之间的函数关系式;(2)若两种自行车至少需要购置辆,且购置两种自行车的费用不超过元,该商场有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?23.(10分)某演唱会购买门票的方式有两种.方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;方式二:如图所示.设购买门票x张,总费用为y万元,方式一中:总费用=广告赞助费+门票费.(1)求方式一中y与x的函数关系式.(2)若甲、乙两个单位分别采用方式一、方式二购买本场演唱会门票共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?24.(10分)如图,在正方形ABCD中,对角线AC,BD相较于点O,∠DBC的角平分线BF交CD于点E,交AC于点F(1)求证:EC=FC;(2)若OF=1,求AB的值25.(12分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.26.为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?
参考答案一、选择题(每题4分,共48分)1、A【解析】
由矩形的性质可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折叠的性质可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的长,即可求△ABC的面积.【详解】解:∵四边形ABCD是矩形∴∠B=90°,AB∥CD∴∠DCA=∠CAB∵把纸片ABCD沿直线AC折叠,点B落在E处,∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,∴∠DCA=∠EAC∴AO=OC=5cm∴OE=∴AE=AO+OE=8cm,∴AB=8cm,∴△ABC的面积=12×AB×BC=16cm2故选:A.【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.2、C【解析】
先把点P(1,a),Q(-2,b)分别代入一次函数解析式得到k+1=a,-2k+1=b,然后根据k<0得到k<-2k,则即可得到a、b的大小关系.【详解】把点P(1,a),Q(-2,b)分别代入y=kx+1得k+1=a,-2k+1=b,∵k<0,∴a<b.故选C.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0)的图象上的点满足其解析式.3、A【解析】分析:根据二次根式有意义的条件可得a-1≥0,再解不等式即可.详解:由题意得:a-1≥0,解得:a≥1,故选A.点睛:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4、C【解析】
7人成绩的中位数是第4名的成绩,参赛选手想要知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4名的成绩是中位数,要判断是否进入前4名,故应知道中位数是多少,故选:C.【点睛】考查了中位数的定义,中位数的实际应用,熟记中位数的定义是解题关键.5、D【解析】∵平行四边形ABCD的周长为40cm,,∴AB=CD,AD=BC,AB+BC+CD+AD=40cm,∴2(AB+BC)=40,∵BC=AB,∴BC=8cm,故选D.6、C【解析】
根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.7、A【解析】
由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.【详解】过C点作CG⊥BD于G,∵CF是∠DCE的平分线,∴∠FCE=45°,∵∠DBC=45°,∴CF∥BD,∴CG等于△PBD的高,∵BD=2,∴GC=BG==1,△PBD的面积等于.故答案为:1.【点睛】本题考查正方形的性质,角平分线的性质,解决本题的关键是证明△BPD以BD为底时高与GC相等.8、C【解析】
试题分析:仿照张华的推导,在面积是9的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是1();当矩形成为正方形时,就有x=(x>0),解得x=3,这时矩形的周长1()=11最小,因此(x>0)的最小值是2.故选C.考点:1.阅读理解型问题;1.转换思想的应用.9、C【解析】试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C.10、B【解析】
依据关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的数,求得a的取值范围,依据关于x的分式方程有整数解,即可得到整数a的取值.【详解】解:∵关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限,
∴a+2>0,a-2≤0,
解得-2<a≤2.
∵+2=,
∴x=,
∵关于x的分式方程+2=有整数解,
∴整数a=0,2,3,2,
∵a=2时,x=2是增根,
∴a=0,3,2
综上,可得,满足题意的a的值有3个:0,3,2,
∴整数a值不可能是2.
故选B.【点睛】本题考查了一次函数的图象与系数的关系以及分式方程的解.注意根据题意求得使得关于x的分式方程有整数解,且关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的a的值是关键.11、A【解析】
把x=2代入函数解析式y=,即可求出答案.【详解】把x=2代入函数解析式y=得,故选A.【点睛】本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.12、C【解析】
由题意得送郎一路雨飞池,说明十从军者和送别者的函数图象在一开始的时候一样,再根据十里江亭折柳枝,说明从军者与送者离原地的距离不变,最后根据离人远影疾行去,说明从军者离原地的距离越来越远,送别者离原地的距离越来越近即可得出答案.【详解】∵送郎一路雨飞池,
∴十从军者和送别者的函数图象在一开始的时候一样,
∵十里江亭折柳枝,
∴从军者与送者离原地的距离不变,
∵离人远影疾行去,
∴从军者离原地的距离越来越远,送别者离原地的距离越来越近.
故选:C.【点睛】考查了函数的图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.二、填空题(每题4分,共24分)13、或【解析】
根据点C的“最大距离”为5,可得x=±5或y=±5,代入可得结果.【详解】设点C的坐标(x,y),∵点C的“最大距离”为5,∴x=±5或y=±5,当x=5时,y=-7(不合题意,舍去),当x=-5时,y=3,当y=5时,x=-7(不合题意,舍去),当y=-5时,x=3,∴点C(-5,3)或(3,-5).故答案为:(-5,3)或(3,-5).【点睛】本题考查一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决数学问题.14、【解析】
连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论【详解】连接,∵,是等腰直角三角形,∴,∠ABC=90°∵四边形是正方形∴BD=BF,∠DBF=∠ABC=90°,∴∠ABD=∠CBF,在△DAP与△BAP中∴,∴,点运动的路径长度即为点从到的运动路径,为.故答案为:【点睛】本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.15、1【解析】
由平行四边形对边平行得AD∥BC,再根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=9cm,CD=AB=6cm,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CE=CD=6cm,∴BE=BC-EC=1cm,故答案为:1.【点睛】本题考查了平行四边形性质,等腰三角形的判定,平行线的性质,角平分线的定义,求出CE=CD=6cm是解题的关键.16、【解析】
根据一次函数的增减性可求得k的取值范围.【详解】∵一次函数y=(1-k)x+1(k是常数)中y随x的增大而减小,∴1-k<0,解得k>1,故答案为:k>1.【点睛】本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.17、-2,0【解析】
需要分类讨论:以AB为该平行四边形的边和对角线两种情况.【详解】解:如图,①当AB为该平行四边形的边时,AB=OC,∵点A(1,1),B(-1,1),O(0,0)∴点C坐标(-2,0)或(2,0)②当AB为该平行四边形的对角线时,C(0,2).故答案是:(-2,0)或(2,0)或(0,2).【点睛】本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.18、1【解析】
由方程有实数根,可得出b1﹣4ac≥0,代入数据即可得出关于m的一元一次不等式,解不等式即可得m的取值范围,再找出其内的最大偶数即可.【详解】解:当m﹣1=0时,原方程为1x+1=0,解得:x=﹣,∴m=1符合题意;当m﹣1≠0时,△=b1﹣4ac=11﹣4(m﹣1)≥0,即11﹣4m≥0,解得:m≤3且m≠1.综上所述:m≤3,∴偶数m的最大值为1.故答案为:1.【点睛】本题考查了根的判别式以及解一元一次方程,分方程为一元一次或一元二次方程两种情况找出m的取值范围是解题的关键.三、解答题(共78分)19、菱形、正方形【解析】【分析】(1)根据垂美四边形的定义进行判断即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【详解】(1)菱形的对角线互相垂直,符合垂美四边形的定义,正方形的对角线互相垂直,符合垂美四边形的定义,而平行四边形、矩形的对角线不一定垂直,不符合垂美四边形的定义,故答案为:菱形、正方形;(2)猜想结论:AD2+BC2=AB2+CD2,证明如下:如图2,连接AC、BD,交点为E,则有AC⊥BD,∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,设AB与CE的交点为M∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,又∵AG=AC,AB=AE,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∠AME=∠BMC,∴∠ABG+∠BMC=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=,BC=1∴AB=2,∴,∴,∴,GE的长是.【点睛】本题考查了四边形综合题,涉及到正方形的性质、菱形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.20、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】
(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1),将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数,∵乙射击的次数是10次,∴=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.【点睛】此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.21、(1)证明见解析;(2).【解析】试题分析:(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案;(2)先求出BD的长,求出菱形的面积,即可求出答案.试题解析:(1)∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)过A作AM⊥BC于M,则AM的长是AE,BF之间的距离,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,∴在Rt△AOB中,由勾股定理得:BO=4,∴BD=2BO=8,∴菱形ABCD的面积为×AC×BD=×6×8=24,∵四边形ABCD是菱形,∴BC=AB=5,∴5×AM=24,∴AM=,即AE,BF之间的距离是.考点:1.菱形的判定和性质,2.平行四边形的判定,3.平行线的性质,4.等腰三角形的判定22、(1);(2)共种方案,购置男式自行车辆,女式自行车辆,费用最低,最低费用为元【解析】
(1)根据题意即可列出总费用y(元)与女式单车x(辆)之间的函数关系式;(2)根据题意列出不等式组,求出x的取值范围,再根据(1)的结论与一次函数的性质解答即可.【详解】解:(1)根据题意,得:即(2)由题意可得:解得:∵为整数∴,,,,共有种方案由(1)得:∵∴y随得增大而增大∴当时,y最小故共种方案,购置男式自行车辆,女式自行车辆,费用最低,最低费用为元.【点睛】本题主要考查一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.23、(1);(2)甲、乙两单位购买门票分别为270张和130张.【解析】
(1)根据题意即可直接写出方式一中y与x的函数关系式;(2)先求出方式二x≥100时,直线解析式为,再设甲单位购买门票张,乙单位购买门票张,根据题意列出方程求出m即可.【详解】(1)解:根据题意得y1=0.02x+10(2)解:当x≥100时,设直线解析式为y2=kx+b(k≠0),代入点(100,10)、(200,16)得解得;∴,设甲单位购买门票张,乙单位购买门票张根据题意可得:解得m=270,得400-m=130;答:甲、乙两单位购买门票分别为270张和130张.【点睛】此题主要考查一次函数的应用,解题的关键是根据函数图像求出解析式.24、(1)详见解析;(2)2+2【解析】
(1)根据正方形的性质得到∠ACB=∠DBC=∠BDC=45∘,由角平分线的定义得到∠DBE=∠EBC=1(2)如图作FH//BC交BD于点H.首先证明△OHF是等腰直角三角形,推出HF=BH=2,求出OB【详解】(1)证明:∵AC,BD是正方形的对角线,∴∠ACB=∠DBC=∠BDC=45∵BE平分∠DBC,∴∠DBE=∠EBC=1∴∠FEC=∠DBC+∠DBE=67.5∘,∴∠FEC=∠EFC,∴EC=FC;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版四年级上册数学第四单元《三位数乘两位数》测试卷【典型题】
- 2024年版融资性担保公司合同监管办法2篇
- 济南城市房屋租赁合同(32篇)
- 北京市怀柔区2023-2024学年高一上学期期末考试化学试题(含答案)
- 广东省揭阳市2023-2024学年四年级上学期语文期末试卷(含答案)
- 设备采购合同中的数量要求
- 详尽的鱼塘承包合同协议
- 语文学习之路与攻略分享
- 语音识别系统购销合同
- 财务咨询服务合同示例
- 《文明交通携手共创》主题班会教案2篇
- 能源岗位招聘面试题与参考回答2025年
- 2023年云浮罗定市医疗卫生单位招聘卫生技术人员考试真题
- 2024年文化版:含有文物保修责任的文化遗址租赁合同
- 第26课《赤壁》课件-2024-2025学年统编版语文八年级上册
- 高校教师职称答辩演讲稿
- 8.2共圆中国梦-(教学设计) 2024-2025学年统编版道德与法治九年级上册
- 保健按摩师(高级)技能理论考试题库(含答案)
- 员工心理健康安全培训
- 2024-2030年中国CT机行业深度调查及投资战略研究报告
- 涉诈风险账户审查表
评论
0/150
提交评论