福建省仙游县联考2024年数学八年级下册期末复习检测模拟试题含解析_第1页
福建省仙游县联考2024年数学八年级下册期末复习检测模拟试题含解析_第2页
福建省仙游县联考2024年数学八年级下册期末复习检测模拟试题含解析_第3页
福建省仙游县联考2024年数学八年级下册期末复习检测模拟试题含解析_第4页
福建省仙游县联考2024年数学八年级下册期末复习检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省仙游县联考2024年数学八年级下册期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.不等式组的解集在数轴上表示为A. B.C. D.2.坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过()A.第一、二象限 B.第一、四象限C.第二、三象限 D.第二、四象限3.已知a、b、c是的三边,且满足,则一定是()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形4.宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为()A.1.2×10﹣7米 B.1.2×107米 C.1.2×10﹣6米 D.1.2×106米5.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE、OF、EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,则直线FE的函数解析式为.其中正确结论的个数是()A.2 B.3 C.4 D.56.下列关于直线的说法正确的是()A.经过第一、二、四象限 B.与轴交于点C.随的增大而减小 D.与轴交于点7.成都是一个历史悠久的文化名城,以下这些图形都是成都市民熟悉的,其中是中心对称图形的是()A. B. C. D.8.不等式3x<﹣6的解集是()A.x>﹣2 B.x<﹣2 C.x≥﹣2 D.x≤﹣29.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连接OE.若∠ADB=30°,∠BAD=100°,则∠BDC的度数是()A.50° B.60° C.70° D.80°10.若二次根式在实数范围内有意义,则a的取值范围是()A. B. C.a>1 D.a<111.小华的爷爷每天坚持体育锻炼,某天他慢跑从家到中山公园,打了一会儿太极拳后坐公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是().A. B. C. D.12.某校规定学生的数学学期评定成绩满分为100,其中平时成绩占50%,期中考试成绩占20%,期末考试成绩占30%.小红的三项成绩(百分制)依次是86、70、90,小红这学期的数学学期评定成绩是()A.90 B.86 C.84 D.82二、填空题(每题4分,共24分)13.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.14.如图,点B、C分别在直线y=2x和直线y=kx上,A、D是x轴上两点,若四边形ABCD为矩形,且AB:AD=1:2,则k的值是_____.15.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.16.以正方形ABCD的边AD为一边作等边△ADE,则∠AEB的度数是________.17.如图,在矩形中,,,点,分别在边,上,以线段为折痕,将矩形折叠,使其点与点恰好重合并铺平,则线段_____.18.如图,为正三角形,是的角平分线,也是正三角形,下列结论:①:②:③,其中正确的有________(填序号).三、解答题(共78分)19.(8分)计算(1)计算:(2)20.(8分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.(1)求该超市粽子与咸鸭蛋的价格各是多少元?(2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?21.(8分)已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P.(1)点D、E分别在线段BA、BC上;①若∠B=60°(如图1),且AD=BE,BD=CE,则∠APD的度数为;②若∠B=90°(如图2),且AD=BC,BD=CE,求∠APD的度数;(2)如图3,点D、E分别在线段AB、BC的延长线上,若∠B=90°,AD=BC,∠APD=45°,求证:BD=CE.22.(10分)如图,中,平分交于点,为的中点.(1)如图①,若为的中点,,,,,求;(2)如图②,为线段上一点,连接,满足,.求证:.23.(10分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当t为何值时,△PAE为直角三角形?24.(10分)解答题.某校学生积极为地震灾区捐款奉献爱心.小颖随机抽查其中30名学生的捐款情况如下:(单位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、1.(1)这30名学生捐款的最大值、最小值、极差、平均数各是多少?(2)将30名学生捐款额分成下面5组,请你完成频数统计表:(3)根据上表,作出频数分布直方图.25.(12分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.26.如图,在中,点在边上,点在边的延长线上,且,与交于点.(1)求证:;(2)若点是的中点,,求边的长.

参考答案一、选择题(每题4分,共48分)1、A【解析】

先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【详解】,解不等式得:,解不等式得:,不等式组的解集为,在数轴上表示为:.故选:.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.2、A【解析】

根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.【详解】∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,∴该函数图象是直线y=4,∴该函数图象经过第一、二象限.故选:A.【点睛】本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.3、C【解析】

由a3-ac2-ab2=0知a(a2-c2-b2)=0,结合a≠0得出a2=b2+c2,根据勾股定理逆定理可得答案.【详解】解:∵a、b、c是△ABC的三边,

∴a≠0,b≠0,c≠0,

又a3-ac2-ab2=0,

∴a(a2-c2-b2)=0,

则a2-c2-b2=0,即a2=b2+c2,

∴△ABC一定是直角三角形.

故选:C.【点睛】本题考查因式分解的应用,解题的关键是掌握勾股定理逆定理与因式分解的运用.4、A【解析】

科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】解:0.00000012米=1.2×10﹣7米,故答案为A。【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.5、B【解析】

①通过证明全等判断,②④只能确定为等腰三角形,不能确定为等边三角形,据此判断正误,③通过判断,⑤作于点M通过直角三角形求出E、F坐标从而求得直线解析式.【详解】∵点E、F都在反比例函数的图像上,∴,即,∵四边形是正方形,∴,∴∴,∴,①正确;∵∴,∵k的值不能确定,∴的值不能确定,②错误;∴只能确定为等腰三角形,不能确定为等边三角形,∴,,∴,,④错误;∵,∴,∴,③正确;作于点M,如图∵,为等腰直角三角形,,设,则,在中,,即,解得,∴,在正方形中,,∴,即为等腰直角三角形,∴,设正方形的边长为,则,在中,,即,解得∴,∴∴设直线的解析式为,过点则有解得故直线的解析式为;⑤正确;故正确序号为①③⑤,选.【点睛】本题考查了反比例函数与正方形的综合运用,解题的关键在于利用函数与正方形的相关知识逐一判断正误.6、D【解析】

直接根据一次函数的性质即可解答【详解】A.直线y=2x−5经过第一、三、四象限,错误;B.直线y=2x−5与x轴交于(,0),错误;C.直线y=2x−5,y随x的增大而增大,错误;D.直线y=2x−5与y轴交于(0,−5),正确故选:D.【点睛】此题考查一次函数的性质,解题关键在于掌握其性质7、C【解析】

根据中心对称图形的概念判断即可.【详解】解:A、B、D中的图形都不是中心对称图形,C中图形是中心对称图形;故选:C.【点睛】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,这个图形就叫做中心对称图形.8、B【解析】

根据不等式的性质在不等式的两边同时除以3即可求出x的取值范围.【详解】在不等式的两边同时除以3得:x<-1.

故选:B.【点睛】本题考查了解简单不等式的能力,解不等式依据的是不等式的基本性质:

(1)不等式的两边同时加上(或减去)同一个数(或整式),不等号的方向不变;

(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;

(3)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9、A【解析】

直接平行四边形邻角互补利得出∠ADC的度数,再利用角的和差得出答案.【详解】解:∵▱ABCD中,AB∥CD,

∴∠BAD+∠ADC=180°,

∵∠BAD=100°,

∴∠ADC=80°,

∵∠ADB=30°,

∴∠BDC=∠ADC-∠ADB=50°,

故选A.【点睛】本题主要考查了平行四边形的性质和平行线的性质,关键是求出∠ADC的度数.10、A【解析】分析:根据二次根式有意义的条件可得a-1≥0,再解不等式即可.详解:由题意得:a-1≥0,解得:a≥1,故选A.点睛:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.11、C【解析】

根据在每段中,离家的距离随时间的变化情况即可进行判断.【详解】图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变。故D错误;第三阶段:搭公交车回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.

故选:C.【点睛】本题考查函数图象,解题的关键是由题意将图象分为三个阶段进行求解.12、C【解析】

根据加权平均数的计算方法列出算式,再进行计算即可得出答案.【详解】解:小红这学期的数学学期评定成绩是:86×50%+70×20%+90×30%=84(分);故选:C.【点睛】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.二、填空题(每题4分,共24分)13、2.40,2.1.【解析】∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它们的中位数为2.40,众数为2.1.故答案为2.40,2.1.点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.14、【解析】

根据矩形的性质可设点A的坐标为(a,0),再根据点B、C分别在直线y=2x和直线y=kx上,可得点B、C、D的坐标,再由AB:AD=1:2,求得k的值即可.【详解】解:∵四边形ABCD为矩形,∴设点A的坐标为(a,0)(a>0),则点B的坐标为(a,2a),点C的坐标为(a,2a),点D的坐标为(a,0),∴AB=2a,AD=(﹣1)a.∵AB:AD=1:2,∴﹣1=2×2,∴k=.故答案为:.【点睛】一次函数在几何图形中的实际应用是本题的考点,熟练掌握矩形的性质是解题的关键.15、4或【解析】

解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:4或.16、75˚或15˚【解析】

解答本题时要考虑两种情况,E点在正方形内和外两种情况,即∠AEB为锐角和钝角两种情况.【详解】解:当点E在正方形ABCD外侧时,∵正方形ABCD,∴∠BAD=90°,AB=AD,又∵△ADE是正三角形,∴AE=AD,∠DAE=60°,∴△ABE是等腰三角形,∠BAE=90°+60°=150°,∴∠ABE=∠AEB=15°;当点E在正方形ABCD内侧时,∵正方形ABCD,∴∠BAD=90°,AB=AD,∵等边△AED,∴∠EAD=60°,AD=AE=AB,∴∠BAE=90°-60°=30°,,故答案为:15°或75°.【点睛】此题主要考查了正方形和等边三角形的性质,同时也利用了三角形的内角和,解题首先利用正方形和等边三角形的性质证明等腰三角形,然后利用等腰三角形的性质即可解决问题.本题要分两种情况,这是解题的关键.17、3.1【解析】

根据折叠的特点得到,,可设,在Rt△AGE中,利用得到方程即可求出x.【详解】解∵折叠,∴,.设,∴.在中,,∴,解得.故答案为:3.1.【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用.18、①②③【解析】

由等边三角形的性质可得AE=AD,∠CAD=∠BAD=30°,AD⊥BC,可得∠BAE=∠BAD=30°,且AE=AD,可得EF=DF,“SAS”可证△ABE≌△ABD,可得BE=BD,即可求解.【详解】解:∵△ABC和△ADE是等边三角形,AD为∠BAC的角平分线,

∴AE=AD,∠CAD=∠BAD=30°,AD⊥BC,

∴∠BAE=∠BAD=30°,且AE=AD,

∴EF=DF

∵AE=AD,∠BAE=∠BAD,AB=AB

∴△ABE≌△ABD(SAS),

∴BE=BD

∴正确的有①②③

故答案为:①②③【点睛】本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.三、解答题(共78分)19、(1);(2)【解析】

(1)先根据算术平方根的代数意义,零指数幂的运算法则以及绝对值的意义进行化简,最后再进行加减运算;(2)先进行分母有理化运算和根据完全平方公式去括号,然后合并即可.【详解】(1)原式(2)原式【点睛】本题考查了二次根式的混合运算,同时还考查了绝对值和零指数幂.20、(1)咸鸭蛋的价格为1.2元,粽子的价格为3元(2)她最多能购买粽子10个【解析】

(1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.(2)设小东妈妈能购买粽子y个,根据题意列出不等式解答即可.【详解】(1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.(2)设小东妈妈能购买粽子y个,根据题意可得:3y+1.2(18﹣y)≤40,解得:y≤,因为y取整数,所以y的最大值为10,答:她最多能购买粽子10个【点睛】此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.21、(1)①60°;②45°;(2)见解析【解析】

(1)连结AC,由条件可以得出△ABC为等边三角形,再由证△CBD≌△ACE就可以得出∠BCD=∠CAE,就可以得出结论;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AECF是平行四边形,就有AE∥CF,就可以得出∠EAC=∠FCA,就可以得出结论;(3)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,就有∠DCF=∠APD=45°,推出CF∥AE,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AFCE是平行四边形,就有AF=CE.【详解】(1)①如图1,连结AC,∵AD=BE,BD=CE,∴AD+BD=BE+CE,∴AB=BC.∵∠B=60°,∴△ABC为等边三角形.∴∠B=∠ACB=60°,BC=AC.在△CBD和△ACE中,∴△CBD≌△ACE(SAS),∴∠BCD=∠CAE.∵∠APD=∠CAE+∠ACD,∴∠APD=∠BCD+∠ACD=60°.故答案为60°;②如图2,作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90°.∵∠B=90°,∴∠FAD=∠B.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,∴∠FDC=90°,∴∠FCD=45°.∵∠FAD=90°,∠B=90,∴∠FAD+∠B=180°,∴AF∥BC.∵DB=CE,∴AF=CE,∴四边形AECF是平行四边形,∴AE∥CF,∴∠EAC=∠FCA.∵∠APD=∠ACP+∠EAC,∴∠APD=∠ACP+∠ACE=45°;(2)如图3,作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90°.∵∠ABC=90°,∴∠FAD=∠DBC=90°.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,∴∠FDC=90°,∴∠FCD=45°.∵∠APD=45°,∴∠FCD=∠APD,∴CF∥AE.∵∠FAD=90°,∠ABC=90,∴∠FAD=∠ABC,∴AF∥BC.∴四边形AECF是平行四边形,∴AF=CE,∴CE=BD.【点睛】此题考查了全等三角形的判定与性质的运用,等边三角形的判定及性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.22、(1)(2)见解析【解析】

(1)根据平行四边形的性质得出AB∥CD,AD∥BC,由DF平分∠ADC可得△DCF为等腰三角形,即DC=FC=8,再根据AB⊥CD得出△ACD为直角三角形,由G是HD的中点得出DH=2GC=,利用勾股定理得出HC=4,即AH=5,最后根据为的中点,即可得出MG的值.(2)过点D作DN∥AC交CG延长线于N,可得,,由G是DH的中点得,故,即,再由四边形ABCD是平行四边形可得∠DAC=∠ACB=∠AND,根据三角形内角和定理可得∠BMF=∠AND,∠BMF+∠B=∠AND+∠ADC,再由∠MFC=∠NDC,且CF=CD,∠FCM=∠DCM证明得出△MFC△NDC(ASA),即可得出CM=CN=2CG.【详解】(1)四边形ABCD是平行四边形AB∥CD,AD∥BC又AD∥BC∠ADF=∠DFCDF平分∠ADC∠ADF=∠FDC∠DFC=∠FDC△DCF为等腰三角形CD=FC=8AB⊥CD且AB∥CDAC⊥CD△ACD为直角三角形又G是HD的中点且GC=DH=2GC=(斜边中线=斜边的一半)RT△HCD中DC=8,HD=AC=9AH=5M是AD的中点.(2)证明:过点D作DN∥AC交CG延长线于N,G是DH的中点,且∠N=∠ACG,∠CGH=∠DGN又四边形ABCD是平行四边形∠B=∠ADC,AD∥BC∠DAC=∠ACB=∠AND∠MFB=∠BAC,且∠BMF=180°-∠B-∠BFM,∠ACB=180°-∠B-∠BAC∠BMF=∠ACB∠BMF=∠ADN∠BMF+∠B=∠AND+∠ADC∠MFC=∠NDC,且CF=CD,∠FCM=∠DCM△MFC△NDC(ASA)CM=CN=2CG【点睛】本题主要考查平行四边形的性质、斜边的性质、勾股定理,解题关键是熟练掌握平行四边形的性质及斜边的性质,利用勾股定理求出AH的值.23、(1)5;(2)当t=2或t=时,△PAE为直角三角形;【解析】

(1)在直角△ADE中,利用勾股定理进行解答;

(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;【详解】解:(1)∵矩形ABCD中,AB=9,AD=1,∴C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论