




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市四校连赛2024届八年级数学第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.要使分式有意义,则x的取值应满足()A. B. C. D.2.下列四个数中,大于而又小于的无理数是A. B. C. D.3.已知一组数据:15,16,14,16,17,16,15,则这组数据的中位数是()A.17B.16C.15D.144.一次函数的图象与轴的交点坐标是()A. B. C. D.5.关于x的方程x2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC的两边长,则△ABC的腰长为()A.3 B.6 C.6或9 D.3或66.如图,在正方形中,点在上,,垂足分别为,,则的长为()A.1.5 B.2 C.2.5 D.37.一个多边形的每一个外角都等于它相邻的内角的一半,则这个多边形的边数是()A.3 B.4 C.5 D.68.如图,矩形的面积为28,对角线交于点;以、为邻边作平行四边形,对角线交于点;以、为邻边作平行四边形;…依此类推,则平行四边形的面积为()A. B. C. D.9.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.如图,一次函数与的图象交点的横坐标为3,则下列结论:①;②;③当时,中,正确结论的个数是()A.0 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.如图,平行四边形ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=1,求AB的长是___________.12.如图,含45°角的直角三角板DBC的直角顶点D在∠BAC的角平分线AD上,DF⊥AB于F,DG⊥AC于G,将△DBC沿BC翻转,D的对应点落在E点处,当∠BAC=90°,AB=4,AC=3时,△ACE的面积等于_____.13.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.14.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________.15.如果分式有意义,那么的取值范围是____________.16.一个正方形的面积为4,则其对角线的长为________.17.如图,将绕点按顺时针方向旋转至,使点落在的延长线上.已知,则___________度;如图,已知正方形的边长为分别是边上的点,且,将绕点逆时针旋转,得到.若,则的长为_________.18.某班七个兴趣小组人数分别为4,x,5,5,4,6,7,已知这组数据的平均数是5,则x=________.三、解答题(共66分)19.(10分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.20.(6分)计算:.21.(6分)已知长方形的长,宽.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.22.(8分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.23.(8分)先化简,再求值:,其中x是的整数部分.24.(8分)我们把对角线互相垂直的四边形叫做垂美四边形.(1)(概念理解)在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是___________.(2)(性质探究)如图2,试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,写出证明过程。(3)(问题解决)如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外做正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=,BC=1求GE的长.25.(10分)如图,在平面直角坐标系中,已知直线,都经过点,它们分别与轴交于点和点,点、均在轴的正半轴上,点在点的上方.(1)如果,求直线的表达式;(2)在(1)的条件下,如果的面积为3,求直线的表达式.26.(10分)如图,在矩形ABCD中AD=12,AB=9,E为AD的中点,G是DC上一点,连接BE,BG,GE,并延长GE交BA的延长线于点F,GC=5(1)求BG的长度;(2)求证:是直角三角形(3)求证:
参考答案一、选择题(每小题3分,共30分)1、A【解析】
解:∵在实数范围内有意义,∴.∴故选A.2、B【解析】
根据无理数的大概值和1,2比较大小,首先计算出每个选项的大概值.【详解】A选项不是无理数;B是无理数且C是无理数但D是无理数但故选B.【点睛】本题主要考查无理数的比较大小,关键在于估算结果.3、B【解析】
根据中位数的定义:将一组数据从小到大(或从大到小)排列,最中间的数据(或最中间两个数据)的平均数,就是这组数据的中位数,即可得出答案.【详解】把这组数据按照从小到大的顺序排列:14,15,15,16,16,16,17,最中间的数据是16,所以这组数据的中位数是16.故选B.【点睛】本题考查了中位数的定义.熟练应用中位数的定义来找出一组数据的中位数是解题的关键.4、A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.5、B【解析】
先把x=1代入方程x2-mx+2m=0求出m得到原方程为x2-9x+18=0,利用因式分解法解方程得到x1=1,x2=6,然后根据等腰三角形三边的关系和等腰三角形的确定等腰△ABC的腰和底边长.【详解】解:把x=1代入方程x2-mx+2m=0得9-1m+2m=0,解得m=9,则原方程化为x2-9x+18=0,(x-1)(x-6)=0,所以x1=1,x2=6,所以等腰△ABC的腰长为6,底边长为1.故选:B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.6、D【解析】
作辅助线PB,求证,然后证明四边形是矩形,【详解】如图,连接.在正方形中,.∵,∴,∴.∵,∴四边形是矩形,∴.∴.故选D.【点睛】本题考查了全等三角形的判定定理(SAS)以及矩形对角线相等的性质,从而求出PD的长度7、D【解析】
先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的310°,从而可代入公式求解.【详解】解:设多边形的一个内角为2x度,则一个外角为x度,依题意得
2x+x=180°,
解得x=10°.
310°÷10°=1.
故这个多边形的边数为1.
故选D.【点睛】本题考查了多边形的内角与外角关系、方程的思想,记住多边形的一个内角与外角互补、及外角和的特征是关键.8、C【解析】
设矩形ABCD的面积为S,则平行四边形AOC1B的面积=矩形ABCD的面积=S,平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…,平行四边形AOn-1CnB的面积=,平行四边形AOnCn+1B的面积=,即可得出结果.【详解】解:设矩形ABCD的面积为S根据题意得:平行四边形AOC1B的面积=矩形ABCD的面积=S平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…平行四边形AOn-1CnB的面积=∴平行四边形AOnCn+1B的面积=∴平行四边形的面积=故选C.【点睛】本题考查了矩形的性质、平行四边形的性质、规律推论等知识,熟练掌握矩形的性质和平行四边形的性质,得出平行四边形AOnCn+1B的面积=是解题的关键.9、C【解析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.10、C【解析】
①由一次函数y1=kx+b的图象过第一、二、四象限,即可得出k<0,由此即可得出①正确;②由一次函数y2=x+a的图象过第一、三、四象限,即可得出a<0,由此得出②错误;③根据两一次函数图象的上下位置关系即可得出当x<3时,y1>y2,即③正确.综上即可得出结论.【详解】①∵一次函数y1=kx+b的图象过第一、二、四象限,∴k<0,①正确;②∵一次函数y2=x+a的图象过第一、三、四象限,∴a<0,②错误;③观察函数图象,发现:当x<3时,一次函数y1=kx+b的图象在一次函数y2=x+a的图象的上方,∴当x<3时,y1>y2,③正确.综上可知:正确的结论为①③.故选:C.【点睛】考查了一次函数与一元一次不等式,解题的关键是逐条分析三个选项是否正确.本题属于基础题,难度不大,解决该题型题目时,熟悉一次函数图象与一次函数系数的关系是关键.二、填空题(每小题3分,共24分)11、1【解析】
根据已知条件易证四边形ABDE是平行四边形,可得AB=DE=CD,即D是CE的中点,在Rt△CEF中利用30°角直角三角形的性质可求得CE的长,继而求得AB的长.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∴AB=CE,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵CF=1,∴CE=2,∴AB=1.故答案为1【点睛】本题考查了平行四边形的判定与性质,正确证得D是CE的中点是关键.12、【解析】
根据勾股定理得到BC=5,由折叠的性质得到△BCE是等腰直角三角形,过E作EH⊥AC交CA的延长线于H,根据勾股定理得到EH=,于是得到结论【详解】∵在△ABC中,∠BAC=90°,AB=4,AC=3,∴BC=5,∵△BCE是△DBC沿BC翻转得到得∴△BCE是等腰直角三角形,∴∠BEC=90°,∠BCE=45°,CE=,BC=过E作EH⊥AC交CA的延长线于H,易证△CEH≌△DCG,△DBF≌△DCG∴EH=CG,BF=CG,∵四边形AFDG和四边形BECD是正方形∴AF=AG,设BF=CG=x,则AF=4-x,AG=3+x∴4-x=3+x,∴x=∴EH=CG=∴△ACE的面积=××3=,故答案为:【点睛】此题考查折叠问题和勾股定理,等腰直角三角形的性质,解题关键在于做辅助线13、【解析】
易证得≌,则可证得结论正确;由≌,可得,证得,选项正确;证明是等腰直角三角形,求得选项正确;证明≌,根据正方形被对角线将面积四等分,即可得出选项正确.【详解】解:四边形ABCD是正方形,,,在和中,,≌,,故正确;由知:≌,,,,故正确;四边形ABCD是正方形,,,是等腰直角三角形,,,故正确;四边形ABCD是正方形,,,在和中,,≌,,,故正确;故答案为:.【点睛】此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.14、AB=BC(答案不唯一)【解析】试题解析:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC或AC⊥BD.15、【解析】试题分析:分式有意义的条件是分母不为零,故,解得.考点:分式有意义的条件.16、【解析】
已知正方形的面积,可以求出正方形的边长,根据正方形的边长可以求出正方形的对角线长.【详解】如图,∵正方形ABCD面积为4,∴正方形ABCD的边长AB==2,根据勾股定理计算BD=.故答案为:.【点睛】本题考查了正方形面积的计算,考查了勾股定理的运用,计算正方形的边长是解题的关键.17、462.1【解析】
先利用三角形外角性质得∠ACA′=∠A+∠B=67°,再根据旋转的性质得∠BCB′=∠ACA′=67°,然后利用平角的定义计算∠ACB′的度数;由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF为41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长..【详解】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴∠BCB′=∠ACA′=67°,∴∠ACB′=180°-67°-67°=46°.∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=41°,∴∠FDM=∠EDF=41°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=4,∴BF=BM-MF=BM-EF=4-x,∵EB=AB-AE=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=2.1,∴FM=2.1.故答案为:46;2.1.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理的综合应用.解题的关键是掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.18、4【解析】
根据平均数的定义求出x的值即可.【详解】根据题意得,,解得,x=4.故答案为:4.【点睛】要熟练掌握平均数的定义以及求法.三、解答题(共66分)19、(1);(2);(3)或或.【解析】
(1)根据题意作出图形,即可根据直角坐标系求出坐标;(2)根据题意作出图形,即可根据直角坐标系求出坐标;(3)根据平行四边形的性质作出图形即可写出.【详解】解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;(2)如图点的对应点的坐标;(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:或或【点睛】此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.20、【解析】
根据分式的基本运算法则,先算括号内,再算除法.【详解】试题分析:解:【点睛】考点:实数的运算;本题属于基础应用题,只需学生熟练掌握实数的基本运算规则,即可完成.21、(1);(2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;
(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)∴长方形的周长为.(2)长方形的面积为:正方形的面积也为4.边长为周长为:∴长方形的周长大于正方形的周长.22、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.【解析】试题分析:(1)根据题意列算式即可得到结论;(2)根据题意列方程组即可得到结论;(3)根据题意列算式即可得到结论.试题解析:(1)300÷(180÷1.5)=2.5(小时).答:甲车从A地到达B地的行驶时间是2.5小时;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米.答:乙车到达A地时甲车距A地的路程是175千米.考点:一次函数的应用;分段函数.23、,【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.【详解】解:原式=∵x是的整数部分,∴x=2.当x=2时,.【点睛】本题考查分式的化简求值,熟练掌握运算法则是解题关键.24、菱形、正方形【解析】【分析】(1)根据垂美四边形的定义进行判断即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【详解】(1)菱形的对角线互相垂直,符合垂美四边形的定义,正方形的对角线互相垂直,符合垂美四边形的定义,而平行四边形、矩形的对角线不一定垂直,不符合垂美四边形的定义,故答案为:菱形、正方形;(2)猜想结论:AD2+BC2=AB2+CD2,证明如下:如图2,连接AC、BD,交点为E,则有AC⊥BD,∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,设AB与CE的交点为M∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60270:2025 EN-FR High-voltage test techniques – Charge-based measurement of partial discharges
- 2025至2030中国电子废物回收和再利用服务行业产业运行态势及投资规划深度研究报告
- 2025至2030中国环氧大豆油丙烯酸酯低聚物行业产业运行态势及投资规划深度研究报告
- 2025至2030中国猪肉行业市场占有率及投资前景评估规划报告
- 2025至2030中国特性水泥行业发展分析及前景趋势与投资报告
- 智慧城市服务体系下市民满意度提升策略研究
- 在线学习环境下的学生心理支持策略研究
- 企业培训中的智慧学习空间设计与体验优化
- 教育政策与教师权益保障
- 2025年中国乙炔碳黑数据监测研究报告
- 读后续写美好品德类代表劳动价值的车篮子讲义-高三英语二轮复习
- 《三国的世界》解说词 第一集 01
- 黄石市阳新县法院系统书记员招聘考试真题
- 人教版高中英语必修第二册《Unit2Wildlifeprotection》教案及教学反思
- solidworks-2018安装教程(最详细)
- 留疆战士考试题库
- GB/T 701-2008低碳钢热轧圆盘条
- GB/T 21153-2007土方机械尺寸、性能和参数的单位与测量准确度
- GA/T 1556-2019道路交通执法人体血液采集技术规范
- 复习课专题讲座课件
- 提高人工气道气囊管理正确率品管圈汇报书模板课件
评论
0/150
提交评论