




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄市长安区2024年数学八年级下册期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程S(千米)与时刻①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.42.如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形,则阴影部分面积是()A.12 B.10 C.8 D.63.某小区居民利用“健步行APP”开展健步走活动,为了解居民的健步走情况,小文同学调查了部分居民某天行走的步数单位:千步,并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.有下面四个推断:小文此次一共调查了200位小区居民;行走步数为千步的人数超过调查总人数的一半;行走步数为千步的人数为50人;行走步数为千步的扇形圆心角是.根据统计图提供的信息,上述推断合理的是()A. B. C. D.4.如图,在□ABCD中,对角线AC、BD交于点O,下列式子一定成立的是()A.AC⊥BD B.AO=OD C.AC=BD D.OA=OC5.将点向左平移4个单位长度得到点B,则点B坐标为()A. B. C. D.6.点向右平移个单位后落在直线上,则的值为()A.2 B.3 C.4 D.57.下列实数中,能够满足不等式的正整数是()A.-2 B.3 C.4 D.28.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时9.如果,那么()A.a≥﹣2 B.﹣2≤a≤3C.a≥3 D.a为一切实数10.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7 B.2()7 C.2()8 D.()911.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0) B.(8,-8) C.(-8,8) D.(0,16)12.已知一次函数y=x-2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.“绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x,则可列方程___.14.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.15.已知P1(1,y1),P2(2,y2)是正比例函数的图象上的两点,则y1y2(填“>”或“<”或“=”).16.如图,小明从点出发,前进5后向右转20°,再前进5后又向右转20°,这样一直走下去,直到他第一次回到出发点为止,他所走的路径构成了一个多边形(1)小明一共走了________米;(2)这个多边形的内角和是_________度.17.写出在抛物线上的一个点________.18.如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________三、解答题(共78分)19.(8分)解下列方程式:(1)x2﹣3x+1=1.(2)x2+x﹣12=1.20.(8分)如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.(1)在图①中,判断和形状.(填空)_______________________________________(2)在图②中,判断四边形的形状,并说明理由.21.(8分)先化简,再求值:,且x为满足﹣3<x<2的整数.22.(10分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:原题:如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF解题分析:由于AB=AD,我们可以延长CD到点G,使DG=BE,易得∠ABE=∠ADG=90°,可证ΔABE≅ΔADG.再证明ΔAFG≅ΔAFE,得EF=FG=DG+FD=BE+DF.问题(1):如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD问题(2):如图3,在四边形ABCD中,∠B=∠D=90°,∠BAD=120°,AB=AD=1,点E,F分别在四边形ABCD的边BC,CD上的点,且∠EAF=60°,求此时ΔCEF的周长23.(10分)如图,平面直角坐标系中,点在轴上,点在轴上.(1)求直线的解析式;(2)若轴上有一点使得时,求的面积.24.(10分)计算(+)﹣(+6)25.(12分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.26.阳光小区附近有一块长100m,宽80m的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度7倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图1所示.设步道的宽为a(m).(1)求步道的宽.(2)为了方便市民进行跑步健身,现按如图2所示方案增建塑胶跑道.己知塑胶跑道的宽为1m,长方形区域甲的面积比长方形区域乙大441m2,且区域丙为正方形,求塑胶跑道的总面积.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:根据函数的图像直接读取信息:①乙比甲晚出发1小时,正确;②乙应出发2小时后追上甲,错误;③甲的速度为12÷3=4(千米/小时),正确;甲到达需要20÷4=5(小时);乙的速度为12÷2=6(千米/小时),SI④乙到达需要的时间为20÷6=313(小时),即乙在甲出发41故选C考点:一次函数的图像与性质2、C【解析】
利用平移的性质得到AB∥A′B′,BC∥B′C′,则A′B′⊥BC,延长A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,根据平移的性质得到FB′=2,AE=2,易得四边形ABFE、四边形BEDG都为矩形,然后计算出DE和B′E后可得到阴影部分面积.【详解】解:∵长方形ABCD先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,
∴AB∥A′B′,BC∥B′C′,
∴A′B′⊥BC,
延长A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,
∴FB′=2,AE=2,
易得四边形ABFE、四边形BEDG都为矩形,
∴DE=AD-AE=6-2=4,B′E=EF-B′F=AB-B′F=4-2=2,
∴阴影部分面积=4×2=1.
故选C.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.3、C【解析】
由千步的人数及其所占百分比可判断;由行走步数为千步的人数为70,未超过调查总人数的一半可判断;总人数乘以千步的人数所占比例可判断;用乘以千步人数所占比例可判断.【详解】小文此次一共调查了位小区居民,正确;行走步数为千步的人数为70,未超过调查总人数的一半,错误;行走步数为千步的人数为人,正确;行走步数为千步的扇形圆心角是,正确,故选C.【点睛】本题考查了频数率直方图,读懂统计图表,从中获得必要的信息是解题的关键.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、D【解析】试题解析:A、菱形的对角线才相互垂直.故不对.B、平行四边形中,AO不一定等于OD,故不对.C、只有平行四边形为矩形时,其对角线相等,故也不对.D、平行四边形对角线互相平分.故该选项正确.故选D.5、D【解析】【分析】将点的横坐标减4即可.【详解】将点向左平移4个单位长度得到点B,则点B坐标为,即(-5,2)故选D【点睛】本题考核知识点:用坐标表示点的平移.解题关键点:理解平移的规律.6、A【解析】
根据向右平移横坐标相加,纵坐标不变得出点P平移后的坐标,再将点P平移后的坐标代入y=1x-1,即可求出m的值.【详解】解:∵将点P(0,3)向右平移m个单位,∴点P平移后的坐标为(m,3),∵点(m,3)在直线y=1x-1上,∴1m-1=3,解得m=1.故选A.【点睛】本题考查了点的平移和一次函数图象上点的坐标特征,求出点P平移后的坐标是解题的关键.7、D【解析】
将各项代入,满足条件的即可.【详解】A选项,-2不是正整数,不符合题意;B选项,,不符合题意;C选项,,不符合题意;D选项,,符合题意;故选:D.【点睛】此题主要考查不等式的正整数解,熟练掌握,即可解题.8、B【解析】试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.由条形统计图可得,人数最多的一组是4~6小时,频数为22,考点:频数(率)分布直方图9、C【解析】
直接利用二次根式有意义的条件得出关于不等式组,解不等式组进而得到的取值范围.【详解】解:∵∴解得:故选:C【点睛】本题考查了二次根式有意义的条件以及解不等式组等知识点,能根据已知条件得到关于的不等式组是解题的关键.10、B【解析】
根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【详解】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为,于是得到B3的纵坐标为2…∴B8的纵坐标为2故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.11、C【解析】
根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).【详解】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,∴OA4=4,∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);故选:C.【点睛】本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究An的坐标规律是解题的关键.12、C【解析】
由已知条件知x-1>0,通过解不等式可以求得x>1.然后把不等式的解集表示在数轴上即可.【详解】∵一次函数y=x-1,∴函数值y>0时,x-1>0,解得x>1,表示在数轴上为:
故选:C【点睛】本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题(每题4分,共24分)13、69.05%(1+x)2=72.75%【解析】
此题根据从2019年起每年的森林覆盖率年平均增长率为x,分别列出2020年以及2021年得森林覆盖面积,即可得出方程.【详解】∵设从2019年起每年的森林覆盖率年平均增长率为x,∴根据题意得:2020年覆盖率为:69.05%(1+x),2021年为:69.05%(1+x)²=72.75%,故答案为:69.05%(1+x)²=72.75%【点睛】此题考查一元二次方程的应用,解题关键在于列出方程14、3或1.【解析】
当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.②当点落在边上时,如答图2所示.此时四边形为正方形.【详解】解:当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,在中,,,,沿折叠,使点落在点处,,当为直角三角形时,只能得到,点、、共线,即沿折叠,使点落在对角线上的点处,如图,,,,设,则,,在中,,,解得,;②当点落在边上时,如答图2所示.此时为正方形,.综上所述,的长为3或1.故答案为:3或1.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.15、<.【解析】试题分析:∵正比例函数的,∴y随x的增大而增大.∵,∴y1<y1.考点:正比例函数的性质.16、902880【解析】
先根据题意判断该多边形的形状,再计算该多边形的边的总长和内角和即可.【详解】解:由题意知,该多边形为正多边形,∵多边形的外角和恒为360°,360÷20=18,∴该正多边形为正18边形.(1)小明一共走了:5×18=90(米);故答案为90(2)这个多边形的内角和为:(18-2)×180°=2880°故答案为2880【点睛】本题考查了正多边形的相关知识,掌握多边形的内角和定理是解决本题的关键.17、(0,﹣4)(答案不唯一)【解析】
把(0,﹣4)点的横坐标代入函数式,比较纵坐标是否相符,即可解答.【详解】将(0,﹣4)代入,得到,故(0,﹣4)在抛物线上,故答案为:(0,﹣4).【点睛】此题考查二次函数图象上点的坐标特征,解题关键在于把点代入解析式.18、-1【解析】试题分析:由于点A是反比例函数y=kx考点:反比例函数三、解答题(共78分)19、(1)x=;(2)x=﹣4或x=3.【解析】
(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)∵x2﹣3x+1=1,∴x2﹣3x=﹣1,∴x2﹣3x+=,∴(x﹣)2=,∴x=;(2)∵x2+x﹣12=1,∴(x+4)(x﹣3)=1,∴x=﹣4或x=3;【点睛】本题考查了一元二次方程的解法,根据方程的特点选择合适的方法是解决问题的关键.20、(1)和均为等腰三角形;(2)四边形为平行四边形,证明详见解析.【解析】
根据平行线的性质和折叠的性质解答即可;(2)由三角形中位线的性质可证,,由旋转的性质可知,从而,然后根据平行四边形的判定方法可证四边形是平行四边形.【详解】解:(1)和均为等腰三角形.∵DE∥BC,∴∠A′DE=∠BA′D,∠B=∠ADE,∵∠ADE=∠A′DE,∴∠B=∠BA′D,∴BD=A′D,∴为等腰三角形;同理可证CE=A′E,即为等腰三角形.(2)四边形为平行四边形.理由:、分别是、的中点,,.由旋转的性质可知,,四边形是平行四边形.【点睛】本题考查了折叠的性质,旋转的性质,三角形的中位线,平行线的性质,等腰三角形的判定,以及平行四边形的判定等知识,熟练掌握折叠的性质及旋转的性质是解答本题的关键.21、-5【解析】
根据分式的运算法则即可求出答案.【详解】原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22、(1)EF=BE+FD,见解析;(2)ΔCEF周长为23【解析】
(1)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;
(2)连接AC,证明△ABC≌△ADC(SSS).得∠DAC=∠BAC,同理由(1)得EF=BE+DF,可计算△CEF的周长.【详解】证明:(1)在CD的延长线上截取DG=BE,连接AG,如图2,
∵∠ADF=90°,∠ADF+∠ADG=180°,
∴∠ADG=90°,
∵∠B=90°,
∴∠B=∠ADG=90°,
∵BE=DG,AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AG=AE,
∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,
∵∠EAF=12∠BAD,
∵∠EAG=12∠EAG=12(∠EAF+∠FAG),
∴∠EAF=∠FAG,
又∵AF=AF,AE=AG,
∴△AEF≌△AFG(SAS),
∴EF=FG=DF+DG=EB+DF;
(2)解:连接AC,如图3,
∵AB=AD,BC=CD,AC=AC,
∴△ABC≌△ADC(SSS).
∴∠DAC=∠BAC,
∴∠BAC=12∠BAD=60°,
∵∠B=90°,AB=1,
∴在Rt△ABC中,AC=2,BC=AC2-AB2=22-1【点睛】本题是四边形的综合题,考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线得出全等三角形,难度适中.23、(1);(2)的面积为或【解析】
(1)根据点A,B的坐标,利用待定系数法可求出直线AB的解析式;(2)设点P的坐标为(t,0),分点P在原点左侧及点P在原点右侧两种情况考虑:①若点P在x轴上原点左侧,当PB=AP时,∠APO=2∠ABO,在Rt△APO中,利用勾股定理可求出t的值,进而可得出BP的长,再利用三角形的面积公式可求出△ABP的面积;②若点P在x轴上原点右侧,由对称性,可得出点P′的坐标,进而可得出BP′的长,再利用三角形的面积公式可求出△ABP′的面积.综上,此题得解【详解】解:(1)设直线的解析式为,则:解得:∴所求直线的解析式为:(2)设点为①若点在轴上原点左侧,当时,在中,,,∴解得:∴∴②若点在轴上原点右侧,由对称性,得点为,此时,∴综合上述,的面积为或.【点睛】本题考查了待定系数法求一次函数解析式、勾股定理以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB的解析式;(2)分点P在原点左侧及点P在原点右侧两种情况,求出△ABP的面积.24、【解析】
先去括号,同时把各根式化成最简二次根式,再合并同类二次根即可.【详解】原式=2+﹣﹣1=2+﹣1.【点睛】本题考查了二次根式的加减,能正确合并同类二次根式是解答此题的关键.25、(1)B(0,6);(2)d=﹣t+10;(3)见解析.【解析】【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t,t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6),代入y=﹣x+6,得t+2=﹣(t+2)+6,求出t=2,再求P(2,),N(4,3),可得PH=,NH=2,最后PN=.【详解】解:(1)∵y=﹣x+b交x轴于点A(8,0),∴0=﹣×8+b,b=6,∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);(2)∵A(8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB=10=BC,∴OC=4,∴点C(0,﹣4),设直线AC解析式为y=kx+b’,∴,∴,∴直线AC解析式为y=x﹣4,∵P在直线y=﹣x+6上,∴可设点P(t,﹣t+6),∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肿瘤科家属支持护理计划
- 线上二年级上册语文复习计划
- 小学一年级劳动教育师资培训计划
- 2025年小学心理关怀室工作计划
- 2025复学班主任安全教育计划
- 教科版八年级物理下册学科竞赛备赛计划
- 小学安全应急演练全过程管理计划
- 高二班主任班级活动创新计划
- 2025年小学语文教研组年度工作计划
- 传染病患者隔离防治工作计划
- 车辆挂名使用权转让与免责保障协议
- 2024-2025学年北师大版(2024)物理八年级下册期末练习卷(一)(含解析)
- 儿童课件小学生讲绘本成语故事《69狐假虎威》课件
- 2025年华侨港澳台学生联招考试英语试卷试题(含答案详解)
- ASTM-D3359-(附著力测试标准)-中文版
- JT-T 1495-2024 公路水运危险性较大工程专项施工方案编制审查规程
- 机场FOD防范管理课件
- 注塑产品全自动报价表
- 气体灭火打压方案-七氟丙烷FM200
- 医学生物化学课件PPT
- 设备出厂检验报告(精编版)
评论
0/150
提交评论