版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省襄阳市四中学义教部八年级数学第二学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手
甲
乙
丙
丁
平均数(环)
9.2
9.2
9.2
9.2
方差(环2)
0.035
0.015
0.025
0.027
则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁2.如图,两个正方形的面积分别为,,两阴影部分的面积分别为,(),则等于().A. B. C. D.3.直线=与直线y2=2x在同一平面直角坐标系中的图象如图所示,则不等式y1≤y2的解集为()A.x≤﹣1 B.x≥﹣1 C.x≤﹣2 D.x≥﹣24.方程的解是()A. B., C., D.,5.如图,在平面直角坐标系中,反比例函数的图象经过,两点,,两点的纵坐标分别为3,1,若的中点为点,则点向左平移________个单位后落在该反比例函数图象上?()A. B.2 C.1 D.6.化简的结果是()A. B. C. D.7.比较A组、B组中两组数据的平均数及方差,一下说法正确的是()A.A组,B组平均数及方差分别相等 B.A组,B组平均数相等,B组方差大C.A组比B组的平均数、方差都大 D.A组,B组平均数相等,A组方差大8.如果点P(m,1-2m)在第四象限,那么A.0<m<12 B.-129.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选()参加.A.甲 B.乙 C.甲、乙都可以 D.无法确定10.下列二次根式中,与是同类二次根式的是A. B. C. D.11.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A.①② B.②③ C.①③ D.①②③12.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号
220
225
230
235
240
245
250
数量(双)
3
5
10
15
8
3
2
对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数 B.众数 C.中位数 D.方差二、填空题(每题4分,共24分)13.在一次数学单元考试中,某小组6名同学的成绩(单位:分)分别是:65,80,70,90,100,70。则这组数据的中位数分别是_________________________分。14.如图,平行四边形中,点为边上一点,和交于点,已知的面积等于6,的面积等于4,则四边形的面积等于__________.15.如果一个多边形的每一个外角都等于60°,则它的内角和是__________.16.下列4个分式:①;②;③;④,中最简分式有_____个.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.18.如图,于点E,于点F,,求证:.试将下面的证明过程补充完整填空:证明:,已知______同位角相等,两直线平行,两直线平行,同旁内角互补,又已知,______,同角的补角相等______内错角相等,两直线平行,______三、解答题(共78分)19.(8分)如图是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上(1)在图(1)中,点P在小正方形的顶点上,作出点P关于直线AC的对称点Q(2)在图(2)中,画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上(3)在图(3)中,B是AC的中点,作线段AB的垂直平分线,要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹20.(8分)如图,是的中线,是线段上一点(不与点重合).交于点,,连接.(1)如图1,当点与重合时,求证:四边形是平行四边形;(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长交于点,若,且,求的度数.21.(8分)如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.(10分)如图,四边形ABCD是正方形,点E是BC边上的点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图①,当点E是BC边上任一点(不与点B、C重合)时,求证:AE=EF.(2)如图②当点E是BC边的延长线上一点时,(1)中的结论还成立吗?(填成立或者不成立).(3)当点E是BC边上任一点(不与点B、C重合)时,若已知AE=EF,那么∠AEF的度数是否发生变化?证明你的结论.23.(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.24.(10分)如图,已知在平面直角坐标系中,正比例函数与一次函数的图象相交于点,过点作轴的垂线,分别交正比例函数的图像于点B,交一次函数的图象于点C,连接OC.(1)求这两个函数解析式.(2)求的面积.(3)在坐标轴上存在点,使是以为腰的等腰三角形,请直接写出点的坐标。25.(12分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.26.列方程解应用题:从甲地到乙地有两条公路,一辆私家车在高速公路上的平均速度比在普通公路上的平均速度高,行驶千米的高速公路比行驶同等长度的普通公路节约分钟,求该汽车在高速公路上的平均速度.
参考答案一、选择题(每题4分,共48分)1、B【解析】在平均数相同时方差越小则数据波动越小说明数据越稳定,2、A【解析】
设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.3、B【解析】
直接根据两函数图象的交点坐标即可得出结论.【详解】∵由函数图象可知,当x≥-1时,直线y1=在直线y2=2x的下方,
∴不等式y1≤y2的解集为x≥-1.
故选:B.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象直接得出不等式的解集是解答此题的关键.4、C【解析】
把方程两边的看作一个整体,进行移项、合并同类项的化简,即可通过因式分解法求得一元二次方程的解.【详解】方程经移项、合并同类项后,化简可得:,即,则解为,故选C.【点睛】本题考查一元二次方程的化简求解,要掌握因式分解法.5、D【解析】
根据题意可以推出A,B两点的坐标,由此可得出M点的坐标,设平移n个单位,然后表示出平移后的坐标为(2-n,2),代入函数解析式,即可得到答案.【详解】由题意可得A(1,3),B(3,1),∴M(2,2),设M点向左平移n个单位,则平移后的坐标为(2-n,2),∴(2-n)×2=3,∴n=.故选:D.【点睛】本题主要考查了中点坐标的计算,反比例函数,细心分析即可.6、D【解析】
首先将分子、分母进行因式分解,然后根据分式的基本性质约分.【详解】解:,故选D.7、D【解析】
由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0,则分别计算出平均数及方差即可.【详解】解:由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0则A组的平均数为:,B组的平均数为:,A组的方差为:,B组的方差为:,∴,综上,A组、B组的平均数相等,A组的方差大于B组的方差故选D.【点睛】本题考查了平均数,方差的求法.平均数表示一组数据的平均程度;方差是用来衡量一组数据波动大小的量.8、D【解析】
横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p(m,1-2m)在第四象限,∴m>0,1-2m<0,解得:m>12,故选D【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.9、A【解析】试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;方差为:15乙的平均数为:(10+8+9+7+1)÷5=8;方差为:15∵0.8<2,∴选择甲射击运动员,故选A.考点:方差.10、D【解析】
首先把四个选项中的二次根式化简,再根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式可得答案.【详解】解:A、与不是同类二次根式;B、与不是同类二次根式;C、与不是同类二次根式;D、与是同类二次根式;故选:D.【点睛】此题主要考查了同类二次根式,关键是掌握同类二次根式的定义.11、A【解析】
连接AP,由已知条件利用角平行线的判定可得∠1=∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2=∠3,得到∠1=∠3,得QP∥AR,答案可得.【详解】连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.故选A.【点睛】本题主要考查角平分线的判定和平行线的判定;准确作出辅助线是解决本题的关键,做题时要注意添加适当的辅助线,是十分重要的,要掌握.12、B【解析】
众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.二、填空题(每题4分,共24分)13、75【解析】
根据中位数的定义即可求解.【详解】先将数据从小到大排序为65,70,70,80,90,100,故中位数为(70+80)=75【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义.14、11【解析】
由△ABF的面积等于6,△BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.【详解】∵△ABF的面积等于6,△BEF的面积等于4,∴EF:AF=4:6=2:3,∵四边形ABCD是平行四边形,∴AD//BC,∴△ADF∽△EBF,∴,∵S△BEF=4,∴S△ADF=9,∴S△ABD=S△ABF+S△AFD=6+9=15,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵BD是公共边,∴△BCD≌△DAB,∴S△BCD=S△DAB=15,∴S四边形CDFE=S△BCD-S△BEF=15-4=11,故答案为11.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.15、720°【解析】
根据多边形的外角和等于360°,可求出这个多边形的边数,进而,求出这个多边形的内角和.【详解】∵一个多边形的每一个外角都等于60°,又∵多边形的外角和等于360°,∴这个多边形的边数=360°÷60°=6,∴这个多边形的内角和=,故答案是:720°.【点睛】本题主要考查多边形的外角和等于360°以及多边形的内角和公式,掌握多边形的外角和等于360°是解题的关键.16、①④【解析】
根据最简分式的定义逐式分析即可.【详解】①是最简分式;②=,不是最简分式;③=,不是最简分式;④是最简分式.故答案为2.【点睛】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.17、(22008-1,22008)【解析】
先求出A1、A2、A3的坐标,找出规律,即可求解.【详解】∵直线y=x+1和y轴交于A1,∴A1的交点为(0,1)∵四边形A1B1C1O是正方形,∴OC1=OA1=1,把x=1代入直线得y=2,∴A2(1,2)同理A3(3,4)…∴An的坐标为(2n-1-1,2n-1)故A2019的坐标为(22008-1,22008)【点睛】此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.18、垂直的定义;;BC;两直线平行,同位角相等
【解析】
根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.【详解】证明:,(垂直的定义),(同位角相等,两直线平行),(两直线平行,同旁内角互补),又,(同角的补角相等),(内错角相等,两直线平行),(两直线平行,同位角相等).故答案为:垂直的定义;;;两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质以及垂线的定义,熟练掌握平行线的判定与性质定理是解题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)见解析【解析】
(1)利用数形结合的思想解决问题即可.(2)构造边长分别为,的矩形即可.(3)取格点M,N,作直线MN交AC于E,取格点F,作直线EF,直线EF即为所求.【详解】解:(1)如图1所示.Q为所求(2)如图2所示,矩形ABCD为所求(3)取格点M,N,作直线MN交AC于E,取格点F,作直线EF,直线EF即为所求【点睛】本题主要考查了线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换,掌握线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换是解题的关键.20、(1)见解析;(2)成立,见解析;(3).【解析】
(1)先判断出∠ECD=∠ADB,进而判断出△ABD≌△EDC,即可得出结论;(2)先判断出四边形DMGE是平行四边形,借助(1)的结论即可得出结论;(3)先判断出MI∥BH,MI=BH,进而利用直角三角形的性质即可得出结论.【详解】解:(1)∵,∴,∵,∴,∵是的中线,且与重合,∴,∴,∴,∵,∴四边形是平行四边形;(2)结论成立,理由如下:如图2,过点作交于,∵,∴四边形是平行四边形,∴,且,由(1)知,,,∴,,∴四边形是平行四边形;(3)如图3取线段的中点,连接,∵,∴是的中位线,∴,,∵,且,∴,,∴.【点睛】此题是四边形综合题,主要考查了三角形的中线,中位线的性质和判定,平行四边形的平行和性质,直角三角形的性质,正确作出辅助线是解绑的关键.21、(1);(2)见解析,AB、CD、EF三条线段的长能成为一个直角三角形三边的长,理由见解析【解析】
(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.【详解】(1)线段AB的长是:=;故答案为:;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=()2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.【点睛】此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22、(1)见解析;(2)成立,理由见解析;(3)∠AEF=90°不发生变化.理由见解析.【解析】
(1)在AB上取点G,使得BG=BE,连接EG,根据已知条件利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;(2)在BA的延长线上取一点G,使AG=CE,连接EG,根据已知利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;(3)在BA边取一点G,使BG=BE,连接EG.作AP⊥EG,EQ⊥FC,先证AGP≌△ECQ得AP=EQ,再证Rt△AEP≌Rt△EFQ得∠AEP=∠EFQ,∠BAE=∠CEF,结合∠AEB+∠BAE=90°知∠AEB+∠CEF=90°,从而得出答案.【详解】(1)证明:在BA边取一点G,使BG=BE,连接EG,∵四边形ABCD是正方形,∴∠B=90°,BA=BC,∠DCM═90°,∴BA-BG=BC-BE,即
AG=CE.∵∠AEF=90°,∠B=90°,∴∠AEB+∠CEF=90°,∠AEB+∠BAE=90°,∴∠CEF=∠BAE.∵BG=BE,CF平分∠DCM,∴∠BGE=∠FCM=45°,∴∠AGE=∠ECF=135°,∴△AGE≌△ECF(ASA),∴AE=EF.(2)成立,理由:在BA的延长线上取点G,使得AG=CE,连接EG.∵四边形ABCD为正方形,AG=CE,∴∠B=90°,BG=BE,∴△BEG为等腰直角三角形,∴∠G=45°,又∵CF为正方形的外角平分线,∴∠ECF=45°,∴∠G=∠ECF=45°,∵∠AEF=90°,∴∠FEM=90°-∠AEB,又∵∠BAE=90°-∠AEB,∴∠FEM=∠BAE,∴∠GAE=∠CEF,在△AGE和△ECF中,∵,∴△AGE≌△ECF(ASA),∴AE=EF.故答案为:成立.(3)∠AEF=90°不发生变化.理由如下:在BA边取一点G,使BG=BE,连接EG.分别过点A、E作AP⊥EG,EQ⊥FC,垂足分别为点P、Q,∴∠APG=∠EQC=90°,由(1)中知,AG=CE,∠AGE=∠ECF=135°,∴∠AGP=∠ECQ=45°,∴△AGP≌△ECQ(AAS),∴AP=EQ,∴Rt△AEP≌Rt△EFQ(HL),∴∠AEP=∠EFQ,∴∠BAE=∠CEF,又∵∠AEB+∠BAE=90°,∴∠AEB+∠CEF=90°,∴∠AEF=90°.【点睛】此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.23、(1)证明见解析;(2)证明见解析.【解析】
(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.又∵AC是折痕,∴BC=CE=AD,AB=AE=CD.又∵DE=ED,∴ΔADE≌ΔCED(SSS);(2)∵ΔADE≌ΔCED,∴∠EDC=∠DEA,又∵ΔACE与ΔACB关于AC所在直线对称,∴∠OAC=∠CAB.又∵∠OCA=∠CAB,∴∠OAC=∠OCA.∵∠DOE=∠COA,∴∠OAC=∠DEA,∴DE∥AC.考点:1.折叠问题;2.矩形的性质;3.折叠对称的性质;4.全等三角形的判定和性质;5.平行的判定.24、(1)正比例函数解析式为;一次函数解析式为;(2);(3)M(10,0)或M(-10,0)或M(0,10)或M(0,-10)或(16,0)或(0,12)【解析】
(1)将A点坐标分别代入正比例函数和一次函数解析式,即可得解;(2)首先根据题意求出点B和C的坐标,即可得出BC,进而得出△OBC的面积;(3)首先根据点A坐标求出OA,即可得出腰长,然后分情况讨论:x轴和y轴,即可得解.【详解】(1)根据题意,将分别代入正比例函数和一次函数解析式,得,解得正比例函数解析式为,解得一次函数解析式为(2)根据题意,得,∴∴(3)根据题意,得OA=10当点M在x轴上时,其坐标为M(10,0)或M(-10,0)或(16,0);当点M在y轴上时,其坐标为M(0,10)或M(0,-10)或(0,12);故点M的坐标为(10,0)或(-10,0)或(0,10)或(0,-10)或(16,0)或(0,12)【点睛】此题主要考查正比例函数和一次函数的性质,熟练运用,即可解题.25、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)【解析】
(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版四年级上册数学第四单元《三位数乘两位数》测试卷【典型题】
- 2024年版融资性担保公司合同监管办法2篇
- 济南城市房屋租赁合同(32篇)
- 北京市怀柔区2023-2024学年高一上学期期末考试化学试题(含答案)
- 广东省揭阳市2023-2024学年四年级上学期语文期末试卷(含答案)
- 设备采购合同中的数量要求
- 详尽的鱼塘承包合同协议
- 语文学习之路与攻略分享
- 语音识别系统购销合同
- 财务咨询服务合同示例
- 《社会保险相关知识培训》测试题
- VTE防治护理组织管理架构
- 项目经理职责及所具备的能力PPT讲义课件
- 小学美术-山教版 四年级上册《最受尊敬的人》教学设计学情分析教材分析课后反思
- 浅谈我国知识产权战略
- 全国优质课一等奖《计算机应用基础-计算机系统组成》多媒体课件
- 八年级地理上册第一章人口作业设计案例
- 注塑生产效率统计表OEE
- 退行性膝关节病变范文
- 课程与教学论学习通超星课后章节答案期末考试题库2023年
- 西南政法大学考研经济法教学大纲
评论
0/150
提交评论