版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温州市绣山中学八年级数学第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④.其中正确的结论有()A.1个 B.2个 C.3个 D.4个2.关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是()A.①②③ B.②③④ C.①③④ D.①②③④3.如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为()A.y=﹣x+6 B.y=﹣x+8 C.y=﹣x+10 D.y=﹣x+84.若点,都在反比例函数的图象上,则与的大小关系是A. B. C. D.无法确定5.如图,在平行四边形ABCD中,用直尺和圆规作的∠BAD平分线交BC于点E,若AE=8,AB=5,则BF的长为()A.4 B.5 C.6 D.86.一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.137.如图,直线y=kx+b交坐标轴于A(-3,0)、B(0,1)两点,则不等式-kx-b<0的解集为()A.x<-3 B.x>-3 C.x<3 D.x>38.把根号外的因式移入根号内,结果()A. B. C. D.9.下列图形具有稳定性的是()A.三角形 B.四边形 C.五边形 D.六边形10.某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数10203040关于这组数据,下列说法正确的是()A.众数是2册 B.中位数是2册C.平均数是3册 D.方差是1.511.数据-2,-1,0,1,2的方差是()A.0 B. C.2 D.412.(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH二、填空题(每题4分,共24分)13.对于实数,,,表示,两数中较小的数,如,.若关于的函数,的图象关于直线对称,则的取值范围是__,对应的值是__.14.直线与轴的交点坐标为__.15.将函数的图象向下平移2个单位,所得函数图象的解析式为__________.16.如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.17.在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.18.已知一个反比例函数的图象与正比例函数的图象有交点,请写出一个满足上述条件的反比例函数的表达式:__________________.三、解答题(共78分)19.(8分)如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)当∠A=50°,∠BOD=100°时,判断四边形BECD的形状,并说明理由.20.(8分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.(1)若将这种水果每千克的售价降低元,则每天销售量是多少千克?(结果用含的代数式表示)(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?21.(8分)如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60度,AD=5,求菱形AEFD的面积.22.(10分)在矩形中,,,将沿着对角线对折得到.(1)如图,交于点,于点,求的长.(2)如图,再将沿着对角线对折得到,顺次连接、、、,求:四边形的面积.23.(10分)一列火车以的速度匀速前进.(1)求行驶路程单位:关于行驶时间单位:的函数解析式;(2)在平面直角坐标系中画出该函数的图象.24.(10分)计算:(1);(2)()2﹣(3+)(3﹣).25.(12分)解一元二次方程.(1)(2)26.解方程:(1)2x2+4x+2=0;(2)x2x40
参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;④S△ABD=AB•DE=AB•BE=AB•AB=AB2,即④正确.综上可得①②④正确,共3个.故选C.2、D【解析】
利用正方形的判定方法逐一分析判断得出答案即可.【详解】解:①对角线互相垂直且相等的平行四边形是正方形,故正确;②对角线互相垂直的矩形是正方形,故正确;③对角线相等的菱形是正方形,故正确;④对角线互相垂直平分且相等的四边形是正方形,故正确;故选:D.【点睛】本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.3、D【解析】
连接OO'交AE与点M,过点O'作O'H⊥OC于点H,由轴对称的性质可知AE垂直平分OO',先用面积法求出OM的长,进一步得出OO'的长,再证△AOE∽△OHO',分别求出OH,O'H的长,得出点O'的坐标,再结合点C坐标即可用待定系数法求出直线CO'的解析式.【详解】解:连接OO'交AE与点M,过点O'作O'H⊥OC于点H,∴点E为OC中点,∴OE=EC=OC=3,在Rt△AOE中,OE=3,AO=4,∴AE==5,∵将△OAE沿AE翻折,使点O落在点O′处,∴AE垂直平分OO',∴OM=O'M,在Rt△AOE中,∵S△AOE=AO•OE=AE•OM,∴×3×4=×5×OM,∴OM=,∴OO'=,∵∠O'OH+∠AOM=90°,∠MAO+∠AOM=90°,∴∠MAO=∠O'OH,又∵∠AOE=∠OHO'=90°,∴△AOE∽△OHO',∴==,即==,∴OH=,O'H=,∴O'的坐标为(,),将点O'(,),C(6,0)代入y=kx+b,得,,解得,k=﹣,b=8,∴直线CO'的解析式为y=﹣x+8,故选:D.【点睛】本题考查了轴对称的性质,相似三角形的判定与性质,待定系数法等,解题关键是利用三角形相似的性质求出点O'的坐标.4、A【解析】
把所给点的横纵坐标代入反比例函数的解析式,求出、的值,比较大小即可.【详解】点在反比例函数的图象上,,点在反比例函数的图象上,,.故选:.【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.5、C【解析】
根据尺规作图可得四边形ABEF为菱形,故可根据勾股定理即可求解.【详解】连接EF,设AE、BF交于O点,∵AE平分∠BAD,∴∠BAE=∠FAE,又AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,故AF=BE,又AF∥BE,∴四边形ABEF是菱形,故AE⊥BF,∵AE=8,AB=5∴BF=2BO=故选C.【点睛】此题主要考查菱形的判定与性质,解题的关键是熟知特殊平行四边形的判定与性质及勾股定理的应用.6、C【解析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.
解答:360°÷30°=1.
故选C.
“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.7、B【解析】
求-kx-b<0的解集,即为kx+b>0,就是求函数值大于0时,x的取值范围.【详解】∵要求−kx−b<0的解集,即为求kx+b>0的解集,∴从图象上可以看出等y>0时,x>−3.故选:B【点睛】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.8、B【解析】
根据可得,所以移入括号内为进行计算即可.【详解】根据根式的性质可得,所以因此故选B.【点睛】本题主要考查根式的性质,关键在于求a的取值范围.9、A【解析】
由题意根据三角形具有稳定性解答.【详解】解:具有稳定性的图形是三角形.故选:A.【点睛】本题考查三角形具有稳定性,是基础题,难度小,需熟记.10、B【解析】
根据方差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【详解】解:A、众数是3册,结论错误,故A不符合题意;
B、中位数是2册,结论正确,故B符合题意;
C、平均数是(0×10+1×20+2×30+3×40)÷100=2册,结论错误,故C不符合题意;
D、方差=×[10×(0-2)2+20×(1-2)2+30×(2-2)2+40×(3-2)2]=1,结论错误,故D不符合题意.
故选:B.【点睛】本题考查方差、平均数、中位数及众数,属于基础题,掌握各部分的定义及计算方法是解题的关键.11、C【解析】
先求出这组数据的平均数,再根据方差的公式进行计算即可.【详解】解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:.故选C.【点睛】本题考查方差的计算.12、D【解析】
先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1
在直角三角形DCF中,∴矩形DCGH为黄金矩形
故选:D.【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.二、填空题(每题4分,共24分)13、或,6或3.【解析】
先根据函数可知此函数的对称轴为y轴,由于函数关于直线x=3对称,所以数,的图象即为的图象,据此解答即可【详解】设,①当与关于对称时,可得,②在,中,与没重合部分,即无论为何值,即恒小于等于,那么由于对对称,也即对于对称,得,.综上所述,或,对应的值为6或3故答案为或,6或3【点睛】此题考查函数的最值及其几何意义,解题关键在于分情况讨论14、,【解析】
令y=0,求出x的值即可得出结论【详解】,当时,,得,即直线与轴的交点坐标为:,,故答案为:,【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于令y=015、y=3x-1.【解析】
根据“上加下减”的原则求解即可.【详解】将正比例函数y=3x的图象向下平移1个单位长度,所得的函数解析式为y=3x-1.故答案为:y=3x-1.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.16、【解析】
先根据正方形的性质和轴对称的性质找出使PF+PE取得最小值的点,然后根据勾股定理求解即可.【详解】∵正方形ABCD是轴对称图形,AC是一条对称轴,∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长,∵AB=4,AF=2,∴AG=AF=2,∴EG=.故答案为.【点睛】本题考查了正方形的性质,轴对称之最短路径问题及勾股定理,根据轴对称的性质确定出点P的位置是解答本题的关键.17、丙【解析】
方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】因为=0.56,=0.60,=0.45,=0.50,所以<<<,由此可得成绩最稳定的为丙.故答案为:丙.【点睛】此题考查方差,解题关键在于掌握其定义.18、【解析】
写一个经过一、三象限的反比例函数即可.【详解】反比例函数与有交点.故答案为:.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.三、解答题(共78分)19、(1)证明见解析;(2)四边形BECD是矩形.【解析】
(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)结论:四边形BECD是矩形.由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.【详解】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;【点睛】此题主要考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.20、(1)每天销售量是千克;(2)水果店需将每千克的售价降低1元.【解析】
(1)销售量原来销售量下降销售量,据此列式即可;(2)根据销售量每千克利润总利润列出方程求解即可.【详解】解:(1)每天的销售量是(千克).故每天销售量是千克;(2)设这种水果每斤售价降低元,根据题意得:,解得:,,当时,销售量是;当时,销售量是(斤.每天至少售出260斤,.答:水果店需将每千克的售价降低1元.【点睛】考查了一元二次方程的应用,本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量.第二问,根据售价和销售量的关系,以利润作为等量关系列方程求解.21、见解析【解析】
(1)证明:∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形,∠2=∠AED,又∵DE平分∠ADC,∴∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)在菱形AEFD中,∵∠DAB=60°,∴△AED为等边三角形.∴DE=2.连接AF,与DE相交于O,则.∴.∴.∴.22、(1);(2)的面积是.【解析】
(1)由矩形的性质可得AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC,由勾股定理可求AC=5,由折叠的性质和平行线的性质可得AE=CE,由勾股定理可求AE的长,由三角形面积公式可求EF的长;(2)由折叠的性质可得AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,由“SAS”可证△BAM≌△DCN,△AMD≌△CNB可得MD=BN,BM=DN,可得四边形MDNB是平行四边形,通过证明四边形MDNB是矩形,可得∠BND=90°,由三角形面积公式可求DF的长,由勾股定理可求BN的长,即可求四边形BMDN的面积.【详解】解:(1)∵四边形ABCD是矩形∴AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC∴AC==5,∵将Rt△ABC沿着对角线AC对折得到△AMC.∴∠BCA=∠ACE,∵AD∥BC∴∠DAC=∠BCA∴∠EAC=∠ECA∴AE=EC∵EC2=ED2+CD2,∴AE2=(4−AE)2+9,∴AE=,∵S△AEC=×AE×DC=×AC×EF,∴×3=5×EF,∴EF=;(2)如图所示:∵将Rt△ABC沿着对角线AC对折得到△AMC,将Rt△ADC沿着对角线AC对折得到△ANC,∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,∵AB∥CD∴∠BAC=∠ACD∴∠BAC=∠ACD=∠CAM=∠ACN∴∠BAM=∠DCN,且BA=AM=CD=CN∴△BAM≌△DCN(SAS)∴BM=DN∵∠BAM=∠DCN∴∠BAM−90°=∠DCN−90°∴∠MAD=∠BCN,且AD=BC,AM=CN∴△AMD≌△CNB(SAS)∴MD=BN,且BM=DN∴四边形MDNB是平行四边形连接BD,由(1)可知:∠EAC=∠ECA,∵∠AMC=∠ADC=90°∴点A,点C,点D,点M四点共圆,∴∠ADM=∠ACM,∴∠ADM=∠CAD∴AC∥MD,且AC⊥DN∴MD⊥DN,∴四边形BNDM是矩形∴∠BND=90°∵S△ADC=×AD×CD=×AC×DF∴DF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度版权买卖合同范例2篇
- 2024年版股权转让居间补充协议细化一
- 语文山水写作课程设计
- 电动厂房门课程设计
- 2024年版企业新员工劳动协议细则版B版
- 2025年度消防设备更新改造合同
- 二零二五年度城市轨道交通建设与土建承包商的合同
- 2024版外墙改造工程西北旺工程合同
- 2025版深圳新能源行业员工劳动合同模板3篇
- 2024年度医疗器械知识产权保护与许可合同3篇
- 校本课程《典籍里的中国》教案
- CNAS-CV03-2022 温室气体 第三部分 温室气体声明审定与核查规范和指南
- 四年级上册信息技术教案-9演示文稿巧编辑 |人教版
- 2022年人力资源管理各专业领域必备知识技能
- 租赁(出租)物品清单表
- 提高聚氯乙烯卷材地面一次验收合格率
- 【部编版】2022年语文七年级上:作文能力提升—谋篇布局(含答案)
- 甲型H1N1流感防治应急演练方案(1)
- 稀土高铁铝合金电力电缆应用参数.
- LU和QR分解法解线性方程组
- 漏油器外壳的落料、拉深、冲孔级进模的设计【毕业论文绝对精品】
评论
0/150
提交评论