2024届浙江省衢州市数学八年级下册期末统考模拟试题含解析_第1页
2024届浙江省衢州市数学八年级下册期末统考模拟试题含解析_第2页
2024届浙江省衢州市数学八年级下册期末统考模拟试题含解析_第3页
2024届浙江省衢州市数学八年级下册期末统考模拟试题含解析_第4页
2024届浙江省衢州市数学八年级下册期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省衢州市数学八年级下册期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=0 C.m≠2 D.n=02.函数y=x+m与y=(m≠0)在同一坐标系内的图象可以是()A. B.C. D.3.若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为()A.10 B.7或10 C.4 D.7或44.如图,点A,B在反比例函数(x>0)的图象上,点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是()A.5 B.4 C.3 D.25.在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有()①AC=5②∠A+∠C=180°③AC⊥BD④AC=BDA.①②④ B.①②③ C.②③④ D.①③④6.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是()A.4 B.2 C.1 D.7.若分式无意义,则x的值为(

)A. B. C. D.8.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1) B.(2) C.(3) D.无法确定9.下列事件中,必然事件是()A.“奉贤人都爱吃鼎丰腐乳”B.“2018年上海中考,小明数学考试成绩是满分150分”C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D.“在一副扑克牌中任意抽10张牌,其中有5张A”10.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为()A.4 B.12﹣4 C.12﹣6 D.6二、填空题(每小题3分,共24分)11.将点,向右平移个单位后与点关于轴对称,则点的坐标为______.12.如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图中信息可得二元一次方程组的解是_____.13.数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则14.已知,则____.15.如图,在菱形中,点为上一点,,连接.若,则的度数为__________.16.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.17.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是_____.18.若分式的值为,则的值为_______.三、解答题(共66分)19.(10分)如图,四边形ABCD为平行四边形,的平分线AE交CD于点F交BC的延长线于点E.(1)求证:;(2)连接BF、AC、DE,当时,求证:四边形ACED是平行四边形.20.(6分)如图如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长21.(6分)甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?22.(8分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.(1)求点停止运动时,的长;(2)两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.(3)两点在运动过程中,求使与相似的时间的值.23.(8分)化简与解方程:(1).(2)24.(8分)某校为了了解学生的安全意识,在全校范围内随机抽取部分学生进行问卷调查.根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图,如图所示:根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,将条形统计图补充完整;(2)扇形统计图中,“较强”层次所占圆心角的大小为______°;(3)若该校有3200名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要强化安全教育的学生人数.25.(10分)某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了10400元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.(1)甲、乙两种款型的T恤衫各进货多少件?(2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)26.(10分)如图,在中,,CD平分,,,E,F是垂足,那么四边形CEDF是正方形吗?说出理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题解析:若y关于x的函数是正比例函数,解得:故选A.2、C【解析】

根据一次函数y=x+m的图象必过一、三象限,可判断出选项B、D不符合题意,然后针对A、C选项,先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【详解】一次函数y=x+m中,k=1>0,所以函数图象必过一、三象限,观察可知B、D选项不符合题意;A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确,故选C.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3、C【解析】

根据等腰三角形性质分为两种情况解答:当边长4cm为腰或者4cm为底时【详解】当4cm是等腰三角形的腰时,则底边长18-8=10cm,此时4,4,10不能组成三角形,应舍去;当4cm是等腰三角形的底时,则腰长为(18-4)÷2=7cm,此时4,7,7能组成三角形,所以此时腰长为7,底边长为4,故选C【点睛】本题考查等腰三角形的性质与三角形三边的关系,本题关键在于分情况计算出之后需要利用三角形等边关系判断4、A【解析】

先分别表示出A、B、C、D的坐标,然后求出AC=k-1,BD=-,继而根据三角形的面积公式表示出S△AOC+S△ABD==3,解方程即可.【详解】∵点A,B在反比例函数(x>0)的图象上,点A、B的横坐标分别为1、2,∴A(1,1),B(2,),又∵点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,∴C(1,),D(2,),∴AC=k-1,BD=-,∴S△AOC+S△ABD==3,∴k=5,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,正确表示出△OAC与△ABD的面积是解题的关键.5、A【解析】

当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【详解】根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,∴∠BAD+∠BCD=180°,AC==5,①正确,②正确,④正确;③不正确;故选A.【点睛】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.6、C【解析】

根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.【详解】解:∵四边形ABCD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故选C.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.7、C【解析】

根据分式无意义的条件即可求出答案.【详解】由题意可知:x-1=0,

即x=1,分式无意义,

故选:C.【点睛】此题考查分式无意义的条件,解题的关键是熟练运用分式无意义的条件,本题属于基础题型.8、A【解析】

根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【详解】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.9、C【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、“奉贤人都爱吃鼎丰腐乳”是随机事件;B、“2018年上海中考,小明数学考试成绩是满分150分”是随机事件;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件;D、“在一副扑克牌中任意抽10张牌,其中有5张A”是不可能事件.故选C.【点睛】本题考查了事件发生的可能性大小的判断.10、B【解析】

过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.【详解】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=BC×sin45°=CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=,∴CD=CM﹣MD=12﹣.故选B.【点睛】本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.二、填空题(每小题3分,共24分)11、(4,-3)【解析】

让点A的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.【详解】将点A向右平移4个单位后,横坐标为0+4=4,纵坐标为3∴平移后的坐标是(4,3)∵平移后关于x轴对称的点的横坐标为4,纵坐标为-3∴它关于x轴对称的点的坐标是(4,-3)【点睛】此题考查点的平移,关于x轴对称点的坐标特征,解题关键在于掌握知识点12、【解析】

直接利用已知图形结合一次函数与二元一次方程组的关系得出答案.【详解】如图所示:根据图中信息可得二元一次方程组的解是:.故答案为:.【点睛】此题主要考查了一次函数与二元一次方程组的关系,正确利用图形获取正确信息是解题关键.13、1【解析】∵x>5∴x相当于已知调和数1,代入得,1314、1【解析】

先求出x的值,然后提取公因式xy分解因式,再把数值代入得出答案.【详解】解:∵,∴x=-5∴xy(x+y)=-5×3×(-2)

=1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.15、18【解析】

由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形,∴AD=CD,∠A=∠BCD,CD∥AB,∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°,∵CD∥AB,∴∠CDE=∠DEA=72°,且DE=DC=DA,∴∠DCE=54°,∵∠DCB=∠DAE=72°,∴∠BCE=∠DCB-∠DCE=18°.故答案为:18.【点睛】本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.16、1或8【解析】

由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.【详解】设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=15∘,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x−12x+32=0,解得x=1,x=8,即移动的距离AA′等1或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.17、x<1【解析】试题解析:一次函数y=kx+b经过点(1,2),且函数值y随x的增大而增大,∴当y<2时,x的取值范围是x<1.故答案为:x<1.18、【解析】

分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】由题意可得3-2x=1,解得x=,又∵2+3x≠1,解得x=.【点睛】此题考查分式的值为零的条件,解题关键在于掌握运算法则三、解答题(共66分)19、(1)详见解析;(2)详见解析.【解析】

(1)由平行四边形的性质可得AD∥BC,AB∥CD,AB=CD,即可得∠AEB=∠DAE,由AE是∠BAD的平分线,根据角平分线的定义可得∠BAE=∠DAE,所以∠BAE=∠AEB,即可判定AB=BE,由此即可证得结论;(2)已知AB=BE,BF⊥AE,由等腰三角形三线合一的性质可得AF=EF,再证明△ADF≌△ECF,根据全等三角形的性质可得CF=DF,由对角线互相平分的四边形为平行四边形即可判定四边形ACED是平行四边形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)∵AB=BE,BF⊥AE,∴AF=EF,∵AD∥BC,∴∠ADF=∠ECF,∠DAF=∠AEC,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴CF=DF,∵AF=EF,CF=DF,∴四边形ACED是平行四边形.【点睛】本题考查了平行四边形的性质与判定,熟练运用平行四边形的性质定理及判定定理是解决问题的关键.20、(1)证明见解析(2)证明见解析(3)7【解析】

(1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是60°,就可求出∠M的度数;(2)过点E作EG∥CM交CD的延长线于点G,可得到∠G=∠HCF,先证明△EDG是等边三角形,结合已知条件证明EG=CF,利用AAS证明△EGH≌△FCH,再根据全等三角形的对应边相等,可证得结论;(3)设BD,EF交于点N,根据前面的证明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定义及三角形内角和定理可求出∠HED,∠EHD的度数,从而利用等腰三角形的判定和性质,可证得ED=DH=CF,可推出CD=3DH,就可求出DH的长,然后利用解直角三角形分别求出BN,NH的长,再利用勾股定理就可求出BH的长.【详解】(1)证明:∵四边形ABCD和四边形BCMD都是菱形,∴BC=CD=AD,BC=DM=CM∴CD=DM=CM=AD,∴△CDM是等边三角形,∴∠M=60°。(2)解:如图2,过点E作EG∥CM交CD的延长线于点G,∴∠G=∠HCF=60°,∠GED=∠M=60°,∴∠G=∠GED=∠EDG=60°,∴△EDG是等边三角形∴EG=DE;∵AD=CM,AE=MF,∴DE=CF,∴EG=CF;在△EGH和△FCH中,∠G=∠HCF∴△EGH≌△FCH(AAS)∴EH=FH.(3)解:如图3,设BD,EF交于点N,由(1)(2)的证明过程可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,∵EF⊥CM,∴∠EFM=90°,∴∠HED=90°-60°=30°,∠CDM=∠HED+∠EHD=60°∴∠EHD=60°-30°=30°=∠HED=∠CHF∴ED=DH=CF,在R△CHF中,∠CHF=30°∴CH=2CH=2DH,∴CD=CH+DH=3DH=3解之:DH=CF=1∵菱形CBDM,EF⊥CM∴BD∥CM∴EF⊥BD;∴∠DNH=∠BNH=90°,在Rt△DHN中,∠DHN=30°,DH=1∴DN=DHsin∠30°=12,NH=DHcos30°=32∴BN=BD-DN=3-12=5在Rt△BHN中,BH=BN【点睛】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行线的性质、勾股定理、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质是解题的关键.21、(1)甲的中位数91.5,乙的中位数93;(2)甲的数学综合成绩92,乙的数学综合成绩91.1.【解析】

(1)由中位数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】(1)甲的中位数=,乙的中位数=;(2)甲的数学综合成绩=93×0.4+93×0.3+19×0.1+90×0.2=92,乙的数学综合成绩=94×0.4+92×0.3+94×0.1+16×0.2=91.1.【点睛】此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.22、(1)(2)(3)或【解析】

(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,点Q运动到点A时,t==5,∴AP=5,PC=1,在Rt△PBC中,PB=.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴,解得t=.∴t=s时,四边形PQCE是菱形.(3)如图2中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴,∴,∴.如图3中,当∠AQP=90°时,∵△AQP∽△ACB,∴,∴,∴,综上所述,或s时,△APQ是直角三角形.【点睛】本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.23、(1);(2)x=1.【解析】

根据分式的加减法则进行计算即可【详解】解:(1)原式====;(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:当x=1时,x﹣2=﹣1≠0,所以分式方程的解为x=1.【点睛】本题考查分式的加减法,掌握运算法则是解题关键24、(1)200,t图见解析;(2)108;(3)估计全校需要强化安全教育的学生人数为800人【解析】

(1)用条形统计图中“一般”层次的人数除以扇形统计图中“一般”层次所占百分比即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论