版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京玄武区六校联考2024届数学八年级下册期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,对角线AC、BD交于点O,E是CD的中点,若OE=2,则AD的长为()A.2 B.3C.4 D.52.如图,平面直角坐标系中,已知点B,若将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是()A.(3,1) B.(3,2)C.(1,3) D.(2,3)3.方程x(x﹣1)=x的解是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=24.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形 B.等腰直角三角形C.平行四边形 D.菱形5.在实数范围内有意义,则应满足的条件是()A. B. C. D.6.下列式子中属于最简二次根式的是()A. B. C. D.7.若一个正方形的面积为(ɑ+1)(ɑ+2)+,则该正方形的边长为()A. B. C. D.8.若代数式在实数范围内有意义,则的取值范围是A.x<1 B.x≤1 C.x>1 D.x≥19.如图,在ΔABC中,AC=6,BC=8,AB=10,P是AB边上的动点,PE⊥AC,PF⊥BC,则EF的最小值为()A.125 B.245 C.510.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.二、填空题(每小题3分,共24分)11.直线y=x+2与x轴的交点坐标为___________.12.如图,是六边形的一个内角.若,则的度数为________.13.若一组数据6,,3,5,4的众数是3,则这组数据的中位数是__________.14.如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.15.反比例函数与一次函数的图像的一个交点坐标是,则=________.16.计算:=_____.17.某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:年龄组12岁13岁14岁15岁参赛人数5191313则全体参赛选手年龄的中位数是________.18.如图,在中,,,,为上一点,,将绕点旋转至,连接,分别为的中点,则的最大值为_________.三、解答题(共66分)19.(10分)列方程或方程组解应用题:几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.20.(6分)化简并求值:其中.21.(6分)一个“数值转换机”如图所示,完成下表并回答下列问题:输入输出(1)根据上述计算你发现了什么规律?(2)请说明你发现的规律是正确的.22.(8分)某校师生去外地参加夏令营活动,车票价格为每人100元,车站提出两种车票价格的优惠方案供学校选择.第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按原价的80%付款.该校参加这项活动的教师有5名,学生有x名.(1)设购票付款为y元,请写出y与x的关系式.(2)请根据夏令营的学生人数,选择购票付款的最佳方案?23.(8分)阅读下列材料解决问题两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如37和82,它们各数位上的数字之和分别为3+7和8+2,显然3+7=8+2=10故37和82互为“调和数”.(1)下列说法错误的是A.123和51互为调和数”B.345和513互为“调和数C.2018和8120互为“调和数”D.两位数和互为“调和数”(2)若A、B是两个不等的两位数,A=,B=,A和B互为“调和数”,且A与B之和是B与A之差的3倍,求满足条件的两位数A.24.(8分)如图,在矩形中;点为坐标原点,点,点、在坐标轴上,点在边上,直线交轴于点.对于坐标平面内的直线,先将该直线向右平移个单位长度,再向下平移个单位长度,这种直线运动称为直线的斜平移.现将直线经过次斜平移,得到直线.(备用图)(1)求直线与两坐标轴围成的面积;(2)求直线与的交点坐标;(3)在第一象限内,在直线上是否存在一点,使得是等腰直角三角形?若存在,请直接写出点的坐标,若不存在,请说明理由.25.(10分)(1)分解因式:a2b﹣4ab2+4b1.(2)解方程.26.(10分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:(1)画出关于原点的中心对称图形;(2)画出将绕点顺时针方向旋转90°得到的.(3)设为边上一点,在上与点对应的点是.则点坐标为__________.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
平行四边形中对角线互相平分,则点O是BD的中点,而E是CD边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD=1.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.又∵点E是CD边中点,∴AD=2OE,即AD=1.故选:C.【点睛】此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用.2、D【解析】
根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【详解】解:△A1B1O如图所示,点B1的坐标是(2,3).
故选D.【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.3、D【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x(x−1)=x,x(x−1)−x=0,x(x−1−1)=0,x=0,x−1−1=0,x1=0,x1=1.故选:D.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.4、D【解析】
按照轴对称图形和中心对称图形的定义逐项判断即可.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、菱形是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是解题的关键.5、D【解析】
根据二次根式有意义的条件解答即可.【详解】解:由题意得:x+1≥0,解得x≥-1,故答案为D.【点睛】本题考查了二次根式有意义的条件,即牢记二次根式有意义的条件为被开方数大于等于零是解答本题的关键.6、C【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7、B【解析】
把所给代数式重新整理后用完全平方公式分解因式即可.【详解】(ɑ+1)(ɑ+2)+==,∴正方形的边长为:.故选B.【点睛】本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.两项平方项的符号需相同;有一项是两底数积的2倍,是易错点.8、D【解析】
根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】由题意得,x-1≥0,解得x≥1.故选D.【点睛】本题主要考查二次根式有意义的条件,要使二次根式有意义,其被开方数应为非负数.9、B【解析】
先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】如图,连接PC.∵在△ABC中,AC=6,BC=8,AB=10,∴AB2=AC2+BC2,∴∠C=90°.又∵PE⊥AC于点E,PF⊥BC于点F.∴∠CEP=∠CFP=90°,∴四边形PECF是矩形.∴PC=EF.∴当PC最小时,EF也最小,即当PC⊥AB时,PC最小,∵12BC•AC=12AB•PC,即PC=∴线段EF长的最小值为245故选B.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.10、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.二、填空题(每小题3分,共24分)11、(-2,0)【解析】
令纵坐标为0代入解析式中即可.【详解】当y=0时,0=x+2,解得:x=-2,∴直线y=x+2与x轴的交点坐标为(-2,0).点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.12、【解析】
根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E=120°代入,即可求出答案.【详解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720°∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600°故答案为600°【点睛】本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°.13、4【解析】
因为其余各数均出现一次且众数为3,所以,x=3;然后从小到大,排序即可确定中位数.【详解】解:其余各数均出现一次且众数为3,所以,x=3,原数据从小到大排序为:3,3,4,5,6,所以,中位数为4【点睛】解答本题的关键是确定x的值,即灵活应用中位数概念.14、1【解析】
由平行四边形的性质可得S△EHB=S△EIH,S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,由面积和差关系可求四边形IJKL的面积.【详解】解:∵AB∥IL,IJ∥BC,∴四边形EIHB是平行四边形,∴S△EHB=S△EIH,同理可得:S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,∴四边形IJKL面积=四边形EFGH面积−(四边形ABCD面积−四边形EFGH面积)=11−(18−11)=1,故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出S△EHB=S△EIH是解题的关键.15、-6【解析】
根据题意得到ab=2,b-a=3,代入原式计算即可.【详解】∵反比例函数与一次函数y=x+3的图象的一个交点坐标为(m,n),∴b=,b=a+3,∴ab=2,b-a=3,∴==2×(-3)=-6,故答案为:-6【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于得到ab=2,b-a=316、【解析】=17、1【解析】
根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.【详解】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为1岁,∴全体参赛选手的年龄的中位数为1岁.故答案为1.【点睛】中位数的定义是本题的考点,熟练掌握其概念是解题的关键.18、+2【解析】
利用直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得MF的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【详解】解:如图,取AB的中点M,连接MF和CM,
∵将线段AD绕点A旋转至AD′,
∴AD′=AD=1,
∵∠ACB=90°,
∵AC=6,BC=2,
∴AB=.
∵M为AB中点,
∴CM=,
∵AD′=1.
∵M为AB中点,F为BD′中点,
∴FM=AD′=2.
∵CM+FM≥CF,
∴当且仅当M、F、C三点共线且M在线段CF上时,CF最大,
此时CF=CM+FM=+2.
故答案为:+2.【点睛】此题考查旋转的性质,解题的关键是掌握旋转的性质及直角三角形斜边上的中线等于斜边的一半,知道当且仅当M、F、C三点共线且M在线段CF上时CF最大是解题的关键.三、解答题(共66分)19、1.【解析】试题分析:设小伙伴的人数为x人,根据打折后票价列等式,解方程即可得到x值,注意最后要检验.试题解析:解:设小伙伴的人数为x人,根据题意,得:360解得:x=1,经检验x=1是原方程的根,且符合题意.答:小伙伴的人数为1人.考点:列分式方程解应用题.20、,【解析】
先计算异分母分式加法,同时将除法写成乘法再约分,最后将x的值代入计算.【详解】原式==,当时,原式=,故答案为:.【点睛】此题考查分式的化简计算,正确计算分式的混合运算是解题的关键.21、(1)无论输入为多少,输出的值均为;(2)见详解【解析】
(1)根据题中的“数值转换机”程序代入数值计算即可;(2)根据题中的“数值转换机”程序得到化简即可得到结论.【详解】输入输出(1)无论输入为多少,输出的值均为.(2)【点睛】此题考查了分式的混合运算,熟练掌握分式的混合运算顺序和因式分解是解决问题的关键.22、(1)第一种方案:y=78x+500,第二种方案:y=80x+400;(2)当学生人数少于50人时,按方案二购买,当学生人数为50人时,两种方案一样,当学生人数超过50人时,按方案一购买.【解析】
(1)根据两种不同的付款方案分别列出两种y与x的关系式;(2)根据两种方案中其中之一更便宜可以得到不等式,解此不等式可知根据夏令营的学生人数选择购票付款的最佳方案.【详解】解:(1)由题意可得,第一种方案中:y=5×100+100x×78%=78x+500,第二种方案中:y=100(x+5)×80%=80x+400;(2)如果第一种方案更便宜,则有,
78x+500<80x+400,
解得,x>50,
如果第二种方案更便宜,则有,
78x+500>80x+400,
解得,x<50,
如果两种方案价格一样,则有,
78x+500=80x+400,
解得,x=50,∴当学生人数少于50人时,按方案二购买,当学生人数为50人时,两种方案一样,当学生人数超过50人时,按方案一购买.【点睛】本题主要考查一次函数在实际中的应用,根据人数、价格和优惠方案找出等量关系,列出一次函数关系式.23、(1)B(2)18【解析】
(1)根据题意,两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,即可作答
(2)先用“调和数”,得出x+y=m+n,再利用A与B之和是B与A之差的3倍,得出10m+n=20x+2y,即可得出m=,最后利用1≤x≤9,0≤y≤9,计论即可以得出结论【详解】(1)根据调和数的定义,通过计算各位数之和,易知B选项错误故答案选B(2)∵A=,B=,A、B互为“调和数”∴x+y=m+n①∵A与B之和是B与A之差的3倍∴∴∴10m+n=20x+2y②由①②得,m=∵m为两位数的十位数字∴1≤m≤9∴1≤≤9,∴9≤19x+y≤81,且19x+y是9的倍数∴19x+y=18或27或36或45或54或63或72或81则或或或或或或或∵x,y分别为A的十位和个位,∴1≤x≤9,0≤y≤9∴计算可得,仅当时满足,此时x=1,y=8,故A为18故满足A的值为18【点睛】本题考查了整除的问题,新定义解不等式,分类讨论的数学思想,判断出19x+y=18或27或36或45或54或63或72或81是解决(2)的关键24、(1);(2)直线与的交点坐标;(3)存在点的坐标:或或.【解析】
1)直线与两坐标轴围成的面积,即可求解;(2)将直线经过2次斜平移,得到直线,即可求解;(3)分为直角、为直角、为直角三种情况,由等腰直角三角形构造K字形全等,由坐标建立方程分别求解即可.【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业生产化粪池施工合同
- 早教中心幼教聘用协议样本
- 艺术馆通风管道改造协议
- 工程项目投标保密承诺书
- 员工试用期合同范文
- 税务筹划在物流行业中的应用
- 高空交通运输安全协议
- 水利工程投资风险评估监理合同
- 工业锅炉升级改造工程合同
- 地下停车场工程工长聘用合同
- 中医药文化知识考核试题及答案
- 电影知识竞赛试题与答案
- 新苏教版2022-2023五年级科学上册《专项学习-像工程师那样》课件
- 电子物证专业考试复习题库(含答案)
- 毕业论文-电力变压器设计
- 慢性心力衰竭2021完整版课件
- 老年大学课件
- 小学综合实践四年级上册第4单元《主题活动三:我们10岁了》教材分析
- 五年级上册数学教案-平行四边形的认识- 沪教版
- 口腔诊所工作流程图
- 城市经济结构与城市经济增长
评论
0/150
提交评论