版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北武汉一初慧泉中学八年级下册数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.计算的结果是()A.-3 B.3 C.6 D.92.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:53.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.64.在平面直角坐标系中,点M(2019,–2019)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.对于方程:,下列判断正确的是()A.只有一个实数根 B.有两个不同的实数根C.有两个相同的实数根 D.没有实数根6.若一次函数的函数值随的增大而增大,则()A. B. C. D.7.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C8.在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点E(﹣3,4)关于第二象限的平分线对称D.点A与点F(3,﹣4)关于原点对称9.如图,直角坐标系中有两点A(5,0),B(0,4),A,B两点间的距离为()A.3 B.7 C. D.910.下列事件中,属于随机事件的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.一组对边平行另一组对边相等的四边形是平行四边形C.矩形的两条对角线相等D.菱形的每一条对角线平分一组对角二、填空题(每小题3分,共24分)11.甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:甲乙丙丁方差则四个人中成绩最稳定的是______.12.如图,直线y1=-x+a与直线y2=bx-4相交于点P(1,-3),则不等式-x+a≥bx-4的解集是___________.13.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.14.如图,在中,是边上的中线,是上一点,且连结,并延长交于点,则_________.15.如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是____.16.“Iamagoodstudent.”这句话的所有字母中,字母“a”出现的频率是______17.如图,在平面直角坐标系中,OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是,则PA+PC的最小值是_________________.18.如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为__.三、解答题(共66分)19.(10分)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、1.则△ABC的面积是.20.(6分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.21.(6分)如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.22.(8分)如图,在平行四边形ABCD中,AC是它的一条对角线,BE⊥AC于点E,DF⊥AC于点F,求证:四边形BEDF是平行四边形.23.(8分)如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.24.(8分)在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.(1)如图1,当菱形DEFG的一顶点F在AB边上.①若CG=OD时,求直线DG的函数表达式;②求证:OED≌BGF.(2)如图2,当菱形DEFG的一顶点F在AB边右侧,连接BF,设CG=a,FBG面积为S.求S与a的函数关系式;并判断S的值能否等于1?请说明理由;(3)如图3,连接GE,当GD平分∠CGE时,m的值为.(直接写出答案).25.(10分)如图,在四边形中,,是的中点,,,于点.(1)求证:四边形是菱形;(2)若,,求的长.26.(10分)限速安全驾,文明靠大家,根据道路管理条例规定,在某段笔直的公路L上行驶的车辆,限速60千米时,一观测点M到公路L的距离MN为30米,现测得一辆汽车从A点到B点所用时间为5秒,已知观测点M到A,B两点的距离分别为50米、34米,通过计算判断此车是否超速.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据算数平方根的意义解答即可.【详解】∵32=9,∴=3.故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.2、A【解析】
由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:1:2:1.故选:A.【点睛】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.3、C【解析】试题解析:设多边形有n条边,由题意得:110°(n-2)=360°×3,解得:n=1.故选:C.4、D【解析】
四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),再根据点M的坐标的符号,即可得出答案.【详解】解:∵M(2019,﹣2019),∴点M所在的象限是第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5、B【解析】
原方程变形后求出△=b2-4ac的值,然后根据计算结果判断方程根的情况.【详解】∵x(x+1)=0,∴x2+x=0,∵a=1,b=1,c=0,∴△=b2-4ac=1-0=1>0∴方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6、B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8、D【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.【详解】解:A、点A的坐标为(-3,4),∴则点A与点B(-3,-4)关于x轴对称,故此选项错误;
B、点A的坐标为(-3,4),∴点A与点C(3,-4)关于原点对称,故此选项错误;
C、点A的坐标为(-3,4),∴点A与点E(-3,4)重合,故此选项错误;
D、点A的坐标为(-3,4),∴点A与点F(3,-4)关于原点对称,故此选项正确;
故选D.【点睛】此题主要考查了关于xy轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.9、C【解析】
根据勾股定理求解即可.【详解】∵A(5,0),B(0,4),∴OA=5,OB=4,∴AB===,故选:C.【点睛】本题考查了勾股定理,掌握知识点是解题关键.10、B【解析】
根据平行四边形的判定、矩形的性质、菱形的性质结合随机事件与必然事件的概念逐一进行分析判断即可.【详解】A.一组对边平行且一组对角相等的四边形是平行四边形,正确,是必然事件,故不符合题意;B.一组对边平行另一组对边相等的四边形是平行四边形或等腰梯形,是随机事件,故符合题意;C.矩形的两条对角线相等,正确,是必然事件,故不符合题意;D.菱形的每一条对角线平分一组对角,正确,是必然事件,故不符合题意,故选B.【点睛】本题考查了随机事件与必然事件,涉及了平行四边形的判定、矩形的性质、菱形的性质等,熟练掌握相关的知识是解题的关键.二、填空题(每小题3分,共24分)11、甲【解析】
根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【详解】解:,四个人中成绩最稳定的是甲.故答案为:甲.【点睛】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、x≤1.【解析】
观察函数图象得到当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1.【详解】如图,当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1;故答案为x≤1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13、0.7【解析】
用通话时间不足10分钟的通话次数除以通话的总次数即可得.【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.14、1:8.【解析】
先过点D作GD∥EC交AB于G,由平行线分线段成比例可得BG=GE,再根据GD∥EC,得出AE=,最后根据AE:EB=:2EG,即可得出答案.【详解】过点D作GD∥EC交AB于G,∵AD是BC边上中线,∴,即BG=GE,又∵GD∥EC,∴,∴AE=,∴AE:EB=:2EG=1:8.故答案为:1:8.【点睛】本题主要考查了平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是求出AE、EB、EG之间的关系.15、2.【解析】
设AP=x,PB=4,由等腰直角三角形得到DP与PC,然后在直角三角形DPC中利用勾股定理列出CD与x的关系,列出函数解题即可【详解】设AP=x,PB=4,由等腰直角三角形性质可得到DP=,CP=,又易知三角形DPC为直角三角形,所以DC2=DP2+PC2==,利用二次函数性质得到DC2的最小值为8,所以DC的最小值为,故填【点睛】本题主要考察等腰直角三角形的性质与二次函数的性质,属于中等难度题,本题关键在于能用x表示出DC的长度16、【解析】根据题意可知15个字母里a出现了2次,所以字母“a”出现的频率是.故答案为.17、【解析】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,求出BN、CN的长,然后利用勾股定理进行求解即可.【详解】由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,则四边形OMBN是矩形,∵△ABO是等边三角形,∴OM=AO=×4=2,∴BN=OM=2,在Rt△OBM中,BM===2,∴ON=BM=2,∵C,∴CN=ON+OC=2+=3,在Rt△BNC中,BC=,即PC+AP的最小值为,故答案为.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.18、或【解析】
沿着过矩形顶点的一条直线将∠B折叠,可分为两种情况:(1)过点A的直线折叠,(2)过点C的直线折叠,分别画出图形,根据图形分别求出折痕的长.【详解】(1)如图1,沿将折叠,使点的对应点落在矩形的边上的点,由折叠得:是正方形,此时:,(2)如图2,沿,将折叠,使点的对应点落在矩形的边上的点,由折叠得:,在中,,,设,则,在中,由勾股定理得:,解得:,在中,由勾股定理得:,折痕长为:或.【点睛】考查矩形的性质、轴对称的性质、直角三角形及勾股定理等知识,分类讨论在本题中得以应用,画出相应的图形,依据图形矩形解答.三、解答题(共66分)19、64【解析】
试题分析:根据平行可得三个三角形相似,再由它们的面积比等于相似比的平方,设其中一边为一求未知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.【详解】如图,,过M作BC的平行线交AB,AC于D,E,过M作AC平行线交AB,BC于F,H,过M作AB平行线交AC,BC于I,G,根据题意得,△1∽△2∽△3,∵S△1:S△2=1:4,S△1:S△3=1:1,∴DM:EM:GH=1:2:5,又∵四边形BDMG与四边形CEMH为平行四边形,∴DM=BG,EM=CH,设DM为x,则BC=BG+GH+CH=x+5x+2x=8x,∴BC:DM=8:1,∴S△ABC:S△FDM=64:1,∴S△ABC=1×64=64,故答案为:64.20、证明见解析.【解析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【详解】∵在△ABC中,AB=AC,BD=CD,∴AD⊥BC.又∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.【点睛】本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.21、(1)证明见解析;(2证明见解析;(3)BD=1.【解析】
(1)先根据等角对等边得出EA=ED,再在Rt△ADF中根据直角三角形的两锐角互余和等角的余角相等得出∠EAC=∠F,得出EA=EF,等量代换即可解决问题;(2)结论:BD=CF.如图2中,在BE上取一点M,使得ME=CE,连接DM.想办法证明DM=CF,DM=BD即可;(3)如图3中,过点E作EN⊥AD交AD于点N.设BD=x,则DN=,DE=AE=,由∠B=45°,EN⊥BN.推出EN=BN=x+=,在Rt△DEN中,根据DN2+NE2=DE2,构建方程即可解决问题.【详解】(1)证明:如图1中,,,,,,,,.(2)解:结论:.理由:如图2中,在上取一点,使得,连接..,.,,,,,,,,.(3)如图3中,过点作交于点.,,,设,则,,,.,在中,,解得或(舍弃).【点睛】本题是一道三角形综合题,主要考查了等腰三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22、见试题解析【解析】
通过全等三角形(△ABE≌△CDF)的对应边相等推知BE=DF,由“一组对边平行且相等四边形是平行四边形“证得四边形BEDF是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AB=DC,且AB∥DC,∴∠BAE=∠DCF.又∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;∵BE⊥AC,DF⊥AC,∴BE∥DF,∴四边形BEDF是平行四边形.考点:平行四边形的判定与性质.23、证明见解析.【解析】
由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD//BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即得四边形BFDE是平行四边形.从而得出结论BE=DF,【详解】证明:∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∵AE=CF,∴AD−AE=BC−CF,∴ED=BF,又∵AD//BC,∴四边形BFDE是平行四边形,∴BE=DF【点睛】此题考查了平行四边形的性质与判定,注意熟练掌握定理与性质是解决问题的关键.24、(6)①y=2x+2;②见解析;(2)S≠6,见解析;(6)【解析】
(6)①将x=0代入y=mx+2得y=2,故此点D的坐标为(0,2),由CG=OD=2可知点G的坐标为(2,6),将点G(2,6)代入y=mx+2可求得m=2;②延长GF交y轴于点M,根据AAS可证明△OED≌△BGF;(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.先证明Rt△GHF≌Rt△EOD(AAS),从而得到FH=DO=2,由三角形的面积公式可知:S=6﹣a.②当s=6时,a=5,在△CGD中由勾股定理可求得DG=,由菱形的性质可知;DG=DE=,在Rt△DOE中由勾股定理可求得OE=>6,故S≠6;(6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.由菱形的性质可知:DM⊥GM,点M为DF的中点,根据角平分线的性质可知:MD=CD=5,由中点坐标公式可知点M的纵坐标为6,得到ND=6,根据勾股定理可求得MN=,则得到点M的坐标为(,6)然后利用待定系数法求得DM、GM的解析式,从而可得到点G的坐标,最后将点G的坐标代入y=mx+2可求得m的值.【详解】解:(6)①∵将x=0代入y=mx+2得;y=2,∴点D的坐标为(0,2).∵CG=OD=2,∴点G的坐标为(2,6).将点G(2,6)代入y=mx+2得:2m+2=6.解得:m=2.∴直线DG的函数表达式为y=2x+2.②如图6,延长GF交y轴于点M,∵DM∥AB,∴∠GFB=∠DMG,∵四边形DEFG是菱形,∴GF∥DE,DE=GF,∴∠DMG=∠ODE,∴∠GFB=∠ODE,又∵∠B=∠DOE=90°,∴△OED≌△BGF(AAS);(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.∵四边形DEFG为菱形,∴GF=DE,GF∥DE.∴∠GNC=∠EDO.∴∠NGC=∠DEO.∴∠HGF=∠DEO.在Rt△GHF和Rt△EOD中,,∴Rt△GHF≌Rt△EOD(AAS).∴FH=DO=2.∴S△GBF=GB•HF=×2×(6﹣a)=6﹣a.∴S与a之间的函数关系式为:S=6﹣a.当s=6时,则6﹣a=6.解得:a=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能物流配送与LNG运输合作协议3篇
- 二零二五版房产抵押购销与房地产配套基础设施合同3篇
- 二零二五年度黄沙石子矿山环保与资源利用合同3篇
- 二零二五版窗帘行业投资合作协议3篇
- 二零二五年文化活动中心设施承包与文化项目合作合同3篇
- 2025年会议筹办合同
- 二零二四年度2024年企业融资合同模板下载3篇
- 二零二五年度建筑工程漏水预防与免责责任书4篇
- 2025年度旅行社与景区门票预订服务合同4篇
- 二零二五年度高科技研发班组承包合同十3篇
- 企业会计准则、应用指南及附录2023年8月
- 谅解书(标准样本)
- 2022年浙江省事业编制招聘考试《计算机专业基础知识》真题试卷【1000题】
- 认养一头牛IPO上市招股书
- GB/T 3767-2016声学声压法测定噪声源声功率级和声能量级反射面上方近似自由场的工程法
- GB/T 23574-2009金属切削机床油雾浓度的测量方法
- 西班牙语构词.前后缀
- 动物生理学-全套课件(上)
- 河北省衡水市各县区乡镇行政村村庄村名居民村民委员会明细
- DB32-T 2665-2014机动车维修费用结算规范-(高清现行)
- 智能消防设备公司市场营销方案
评论
0/150
提交评论