




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年广东省深圳市龙岗区德琳学校八年级下册数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在Rt△DEF中,∠EFD=90°,∠DEF=30°,EF=3cm,边长为2cm的等边△ABC的顶点C与点E重合,另一个顶点B(在点C的左侧)在射线FE上.将△ABC沿EF方向进行平移,直到A、D、F在同一条直线上时停止,设△ABC在平移过程中与△DEF的重叠面积为ycm2,CE的长为xcm,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.2.分式有意义,则的取值范围为()A. B. C.且 D.为一切实数3.的算术平方根是()A. B.﹣ C. D.±4.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数 B.方差 C.平均数 D.中位数6.下列语句:①每一个外角都等于60∘A.1 B.2 C.3 D.47.如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为()A. B. C. D.8.在中,,,,则的长是()A.4 B. C.6 D.9.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC10.已知直线y1=2x与直线y2=﹣2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④直线y1=2x与直线y2=2x﹣4在平面直角坐标系中的位置关系是平行.其中正确的是()A.①③④ B.②③ C.①②③④ D.①②③11.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形12.已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定二、填空题(每题4分,共24分)13.直线y=3x向下平移2个单位后得到的直线解析式为______.14.已知关于x的方程的解是负数,则n的取值范围为.15.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.16.把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是_____.17.若点与点关于原点对称,则_______________.18.若实数a、b满足,则=_____.三、解答题(共78分)19.(8分)已知,,若,试求的值.20.(8分)若关于x、y的二元一次方程组的解满足x+y>0,求m的取值范围.21.(8分)甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次第2次第3次第4次第5次甲乙ab9若甲、乙射击平均成绩一样,求的值;在条件下,若是两个连续整数,试问谁发挥的更稳定?22.(10分)某演唱会购买门票的方式有两种.方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;方式二:如图所示.设购买门票x张,总费用为y万元,方式一中:总费用=广告赞助费+门票费.(1)求方式一中y与x的函数关系式.(2)若甲、乙两个单位分别采用方式一、方式二购买本场演唱会门票共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?23.(10分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.(1)求点的坐标,并求当时点的坐标;(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.24.(10分)如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E.F.(1)求证:△OEF是等腰直角三角形。(2)若AE=4,CF=3,求EF的长。25.(12分)如图,在四边形ABCD中,∠ABC=90°,E、F分别是AC、CD的中点,AC=8,AD=6,∠BEF=90°,求BF的长.26.如图,在直角坐标系中,点为坐标原点,点,分别在轴,轴的正半轴上,矩形的边,,反比例函数的图象经过边的中点.(1)求该反比例函数的表达式;(2)求的面积.
参考答案一、选择题(每题4分,共48分)1、A【解析】
分0≤x≤2、2<x≤3、3<x≤4三种情况,分别求出函数表达式即可求解.【详解】解:①当0≤x≤2时,如图1,设AC交ED于点H,则EC=x,∵∠ACB=60°,∠DEF=30°,∴∠EHC=90°,y=S△EHC=×EH×HC=ECsin∠ACB×EC×cos∠ACB=CE2=x2,该函数为开口向上的抛物线,当x=2时,y=;②当2<x≤3时,如图2,设AC交DE于点H,AB交DE于点G,同理△AHG为以∠AHG为直角的直角三角形,EC=x,EB=x﹣2=BG,则AG=2﹣BG=2﹣(x﹣2)=4﹣x,边长为2的等边三角形的面积为:2×=;同理S△AHG=(4﹣x)2,y=S四边形BCHG=S△ABC﹣S△AHG=﹣(x﹣4)2,函数为开口向下的抛物线,当x=3时,y=,③当3<x≤4时,如图3,同理可得:y=﹣[(4﹣x)2+(x﹣3)2]=﹣x2+4x﹣,函数为开口向下的抛物线,当x=4时,y=;故选:A.【点睛】本题考查的是动点问题的函数图象,此类题目通常需要分不同时间段确定函数的表达式,进而求解.2、B【解析】
直接利用分式有意义则分母不等于零进而得出答案.【详解】分式有意义,
则x-1≠0,
解得:x≠1.
故选:B.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.3、C【解析】
直接利用算术平方根的定义得出答案.【详解】的算术平方根是:.故选C.【点睛】此题主要考查了算术平方根,正确把握定义是解题关键.4、B【解析】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=1.故选B.5、D【解析】
根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.6、C【解析】
根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.7、B【解析】
由数轴上点表示的数为,点表示的数为1,得PA=2,根据勾股定理得,进而即可得到答案.【详解】∵数轴上点表示的数为,点表示的数为1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴数轴上点所表示的数为:.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.8、C【解析】
根据勾股定理计算即可.【详解】解:∵在Rt△ABC中,∠C=90°,a=8,c=10,∴b==6,故选C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.9、B【解析】【分析】由矩形的判定方法即可得出答案.【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,故选B.【点睛】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.10、C【解析】∵将A(1,2)代入y1和y2中可得左边=右边,∴①是正确的;∵当x=1时,y1=2,y2=2,故两个函数值相等,∴②是正确的;∵x<1,∴2x<2,-2x+4>2,∴y1<y2,∴③是正确的;∵直线y2=2x-4可由直线y1=2x向下平移4个单位长度可得,∴直线y1=2x与直线y2=2x-4的位置关系是平行,∴④是正确的;故选C.11、B【解析】试题分析:利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.考点:命题与定理.12、A【解析】
因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.【详解】解:∵k=﹣3<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2,故选A.【点睛】本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.二、填空题(每题4分,共24分)13、y=3x-1【解析】
直接利用一次函数图象的平移规律“上加下减”即可得出答案.【详解】直线y=3x沿y轴向下平移1个单位,则平移后直线解析式为:y=3x-1,故答案为:y=3x-1.【点睛】本题主要考查一次函数的平移,掌握平移规律是解题的关键.14、n<1且【解析】
分析:解方程得:x=n﹣1,∵关于x的方程的解是负数,∴n﹣1<0,解得:n<1.又∵原方程有意义的条件为:,∴,即.∴n的取值范围为n<1且.15、2.4【解析】
根据已知得出四边形AEPF是矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,∵∠A=90°,PE⊥AB,PF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:12×4=12×5×AP,∴AP=2.4,即EF=2.4【点睛】此题考查勾股定理,矩形的判定与性质,解题关键在于得出四边形AEPF是矩形16、1<m<1.【解析】
直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,求出直线y=﹣x﹣3+m与直线y=2x+4的交点,再由此点在第二象限可得出m的取值范围.【详解】解:直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第二象限,∴,解得:1<m<1.故答案为1<m<1.【点睛】本题考查一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于2、纵坐标大于2.17、【解析】
直接利用关于原点对称点的性质得出a,b的值.【详解】解:∵点A(a,1)与点B(−3,b)关于原点对称,∴a=3,b=−1,∴ab=3-1=.故答案为:.【点睛】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的关系是解题关键.18、﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.三、解答题(共78分)19、【解析】
首先利用,代入进行化简,在代入参数计算.【详解】解:原式===【点睛】本题主要考查分式的化简计算,注意这是二元一次方程的解,利用根与系数的关系也可以计算.20、m>﹣1【解析】
两方程相加可得x+y=m+1,根据题意得出关于m的方程,解之可得.【详解】解:将两个方程相加即可得1x+1y=1m+4,则x+y=m+1,根据题意,得:m+1>0,解得m>﹣1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、(1);(2)乙更稳定【解析】
(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出的值;(2)根据题意令,分别计算甲、乙的方差,方差越小.成绩越稳定.【详解】解:(1)(环)(环)(2)且为连续的整数令,,乙更稳定【点睛】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.22、(1);(2)甲、乙两单位购买门票分别为270张和130张.【解析】
(1)根据题意即可直接写出方式一中y与x的函数关系式;(2)先求出方式二x≥100时,直线解析式为,再设甲单位购买门票张,乙单位购买门票张,根据题意列出方程求出m即可.【详解】(1)解:根据题意得y1=0.02x+10(2)解:当x≥100时,设直线解析式为y2=kx+b(k≠0),代入点(100,10)、(200,16)得解得;∴,设甲单位购买门票张,乙单位购买门票张根据题意可得:解得m=270,得400-m=130;答:甲、乙两单位购买门票分别为270张和130张.【点睛】此题主要考查一次函数的应用,解题的关键是根据函数图像求出解析式.23、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【解析】
(1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.
(2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.
(3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.【详解】解:(1)令,则,解得,,,易得,由得,,解得,由解得或2.8,∴D(1.2,1.6)或(2.8,-1.6).(2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,图1设,易证,,则,,,得,;②如图2,当点在直线上时,过点作轴于点,过点作轴于点,图2过点作于点,同①可得,,则,,,得,;(3)设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),
令x=2m-7,y=m+3,消去m得到:点在直线上运动.故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【点睛】本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.24、(1)见解析;(2)5.【解析】
(1)根据正方形的性质可得∠ABO=∠ACF=45°,OB=OC,∠BOC=90°,再根据同角的余角相等求出∠EOB=∠FOC,然后利用“角边角”证明△BEO和△CFO全等,根据全等三角形对应边相等可得OE=OF,从而得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030北斗系统产业政府战略管理与区域发展战略研究咨询报告
- 集美小学英语毕业试卷
- 绿色供应链对物流的影响试题及答案
- 解析监理行业发展趋势试题及答案
- 冀教版英语九下Unit 10《Lesson 60 Get a Good Education》(单元整体+课时教学设计)
- 2024年度北京市专利代理师科目一(专利法律知识)考前练习题及答案
- 陪诊师行业动态分析试题及答案
- 社交电商发展的痛点分析试题及答案
- 监理工程师考试复习经验谈试题及答案
- 2025年割灌机项目合作计划书
- 2025年高校教师岗前培训《高等教育学》考试模拟试卷及答案(共五套)
- 概括归纳类(非选择题)-2025年高考历史复习热点题型专项训练(解析版)
- 中学教育基础(上)知到课后答案智慧树章节测试答案2025年春陕西师范大学
- 储能站施工组织设计施工技术方案(技术标)
- 楼梯 栏杆 栏板(一)22J403-1
- 北京市海淀区2024年七年级下学期语文期中试卷(附答案)
- 2024年湖北职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- GB/T 24186-2022工程机械用高强度耐磨钢板和钢带
- 人工呼吸的三种方式和操作方法课件
- 项目基坑坍塌事故专项应急预案桌面演练脚本
- 危险化学品MSDS(氮气)
评论
0/150
提交评论