江苏省无锡市江阴市暨阳中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
江苏省无锡市江阴市暨阳中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
江苏省无锡市江阴市暨阳中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
江苏省无锡市江阴市暨阳中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
江苏省无锡市江阴市暨阳中学2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市江阴市暨阳中学2024届八年级数学第二学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.小颖八年级第一学期的数学成绩分别为:平时90分,期中86分,期末95分若按下图所显示的权重要求计算,则小颖该学期总评成绩为()A.88 B. C. D.932.已知:如图,在菱形中,,,落在轴正半轴上,点是边上的一点(不与端点,重合),过点作于点,若点,都在反比例函数图象上,则的值为()A. B. C. D.3.如图所示,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为5,则k的值为()A.5 B.﹣5 C.10 D.﹣104.下列各式中,一定是二次根式的是A. B. C. D.5.计算的值为()A.2 B.3 C.4 D.16.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.– B. C.–2 D.27.下列运算错误的是()A. B.C. D.8.关于x的分式方程有增根,则a的值为()A.﹣3 B.﹣5 C.0 D.29.估计﹣÷2的运算结果在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和410.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<-2 B.-2<x<-1 C.-2<x<0 D.-1<x<0二、填空题(每小题3分,共24分)11.《九章算术》是我国最重要的数学著作之一,其中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何”.译文大意是:“有一根竹子高一丈(十尺),竹梢部分折断,尖端落在地上,竹尖与竹根的距离三尺,问竹干还有多高”,若设未折断的竹干长为x尺,根据题意可列方程为_____.12.己知关于的分式方程有一个增根,则_____________.13.等腰三角形的顶角为,底边上的高为2,则它的周长为_____.14.在市业余歌手大奖赛的决赛中,参加比赛的名选手成绩统计如图所示,则这名选手成绩的中位数是__________.15.在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.16.以正方形ABCD一边AB为边作等边三角形ABE,则∠CED=_____.17.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是_____.18.如图,正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF、BF、E′F.若AE=22.则四边形ABFE′的面积是_____.三、解答题(共66分)19.(10分)(1)判断下列各式是否成立(在括号内划√或×)①();②();③();④.()(2)根据(1)中的结果,将你发现的规律,用含有自然数()的式子表示出来;(3)请说明你所发现的规律的正确性.20.(6分)如图,直线的解析式为,且与x轴交于点D,直线经过点A、B,直线,相交于点C.求点D的坐标;求的面积.21.(6分)如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA=2OB.(1)求直线AB的函数表达式;(2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);(3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由.22.(8分)已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(2,0),B(0,﹣2),P为y轴上B点下方一点,以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限,过M作MN⊥y轴于N.(1)求直线AB的解析式;(2)求证:△PAO≌△MPN;(3)若PB=m(m>0),用含m的代数式表示点M的坐标;(4)求直线MB的解析式.23.(8分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;

(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.24.(8分)如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①当t为何值时,点P、M、N在一直线上?②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.25.(10分)已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.26.(10分)如图,矩形中,,,过对角线的中点的直线分别交,边于点,连结,.(1)求证:四边形是平行四边形.(2)当四边形是菱形时,求及的长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据加权平均数的计算公式即可得.【详解】由题意得:小颖该学期总评成绩为(分)故选:B.【点睛】本题考查了加权平均数的计算公式,熟记公式是解题关键.2、C【解析】

过作,交于,根据菱形的性质得出四边形是平行四边形,,,解直角三角形求得,作轴于,过点作于,解直角三角形求得,,设,则,根据反比例函数系数的几何意义得出,解得,从而求得的值.【详解】解:如图,过作,交于,在菱形中,,,,,,,,四边形是平行四边形,,于点,,作轴于,过点作于,,,,,,,,,,设,则,点,都在反比例函数图象上,,解得,,,.故选.【点睛】本题考查了反比例函数系数的几何意义,菱形的性质,解直角三角形等,求得点的坐标是解题的关键.3、D【解析】

连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图,轴,,,而,,,.故选D.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.4、C【解析】

根据二次根式的定义进行判断.【详解】解:A.无意义,不是二次根式;

B.当时,是二次根式,此选项不符合题意;

C.是二次根式,符合题意;

D.不是二次根式,不符合题意;

故选C.【点睛】本题考查了二次根式的定义,关键是掌握把形如的式子叫做二次根式.5、D【解析】

根据平方差公式计算即可.【详解】原式=x-(x-1)=1.故选D.【点睛】本题考查了二次根式的混合运算,难度不大,注意平方差公式的灵活运用.6、A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.7、A【解析】

根据二次根式的乘法法则和二次根式的性质逐个判断即可.【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意;故选:A.【点睛】本题考查了二次根式的乘除和二次根式的性质,能灵活运用二次根式的乘法法则进行化简是解此题的关键,注意.8、B【解析】

分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程计算即可求出a的值.【详解】分式方程去分母得:x−2=a,由分式方程有增根,得到x+3=0,即x=−3,把x=−3代入整式方程得:a=−5,故选:B.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9、D【解析】

先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.【详解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故选D.【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.10、B【解析】试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.二、填空题(每小题3分,共24分)11、x1+31=(10﹣x)1【解析】

根据勾股定理即可得出结论.【详解】设未折断的竹干长为x尺,根据题意可列方程为:x1+31=(10−x)1.故答案为:x1+31=(10−x)1.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.12、【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x−3),得x−2(x−3)=k+1,∵原方程有增根,∴最简公分母x−3=0,即增根是x=3,把x=3代入整式方程,得k=2.【点睛】本题主要考查了分式方程的增根,熟悉掌握步骤是关键.13、【解析】

根据等腰三角形的性质可分别求得腰长和底边的长,从而不难求得三角形的周长.【详解】解:∵等腰三角形的顶角为120°,底边上的高为2,∴腰长=4,底边的一半=2,∴周长=4+4+2×2=8+4.故答案为:8+4.【点睛】本题考查勾股定理及等腰三角形的性质的综合运用.14、8.5【解析】

根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.【详解】根据图形,这个学生的分数为:,,,,,,,,,,则中位数为.【点睛】本题考查求中位数,解题的关键是掌握求中位数的方法.15、答案为甲【解析】

方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:=83(分),=82(分);经计算知S甲2=6,S乙2=1.S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故答案为甲【点睛】本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.16、30°或150°.【解析】

等边△ABE的顶点E可能在正方形外部,也可能在正方形内部,因此分两种情况画出图形进行求解即可.【详解】分两种情况:①当点E在正方形ABCD外侧时,如图1所示:∵四边形ABCD是正方形,△ABE是等边三角形∴∠ABC=90°,BC=BE=AB,∠ABE=∠AEB=60°,∴∠CBE=∠CBA+∠ABE=90°+60°=150°,∵BC=BE,∴∠BCE═∠BEC=15°,同理可得∠EDA═∠DEA=15°,∴∠CED=∠AEB﹣∠CEB﹣∠DEA=60°﹣15°﹣15°=30°;②当点E在正方形ABCD内侧时,如图2所示:∵∠EAB=∠AEB=60°,∠BAC=90°,∴∠CAE=30°,∵AC=AE,∴∠ACE=∠AEC=75°,同理∠DEB=∠EDB=75°,∴∠CED=360°﹣60°﹣75°﹣75°=150°;综上所述:∠CED为30°或150°;故答案为:30°或150°.【点睛】本题考查了正方形的性质及等边三角形的性质,正确地进行分类,熟练掌握相关的性质是解题的关键.17、x<1.【解析】

根据一次函数与一元一次不等式的关系即可直接得出答案.【详解】由一次函数y=ax+b的图象经过A(1,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<1,故答案为:x<1.【点睛】本题主要考查一次函数和一元一次不等式的知识点,解答本题的关键是进行数形结合,此题比较简单.18、12+42.【解析】

连接EB、EE′,作EM⊥AB于M,EE′交AD于N.易知△AEB≌△AED≌△ADE′,先求出正方形AMEN的边长,再求出AB,根据S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB即可解决问题.【详解】连接EB、EE′,作EM⊥AB于M,EE′交AD于N,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,在△ADE和△ABE中,AD=∴△ADE≌△ABE(SAS),∵把△ADE沿AD翻折,得到△ADE′,∴△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=22,∴AM=EM=EN=AN=2,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=2,AO=2+22,∴AB=2AO=4+22,∴S△AEB=S△AED=S△ADE′=12×2×(4+22)=4+22,S△BDE=S△ADB﹣2S△AEB=12×(4+22)2﹣2×12×2×(4+22∵DF=EF,∴S△EFB=12S△BDE=12×4=∴S△DEE′=2S△AED﹣S△AEE′=2×(4+22)﹣12×(22)2=4+42,S△DFE′=12S△DEE′=12×(4+42)=∴S四边形AEFE′=2S△AED﹣S△DFE′=2×(4+22)﹣(2+22)=6+22,∴S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB=6+22+4+22+2=12+42;故答案为:12+42.【点睛】本题考查正方形的性质、翻折变换、全等三角形的性质,角平分线的性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线,学会利用分割法求四边形面积,属于中考填空题中的压轴题.三、解答题(共66分)19、(1)√;√;√;√;(2);(3)【解析】

(1)根据二次根式的性质直接化简得出即可;(2)根据已知条件即可得出数字变化规律,猜想出(3)中数据即可;(3)根据(1)(2)数据变化规律得出公式即可.【详解】解:(1),正确;,正确;,正确;,正确.故答案为:√;√;√;√;(2);(3).【点睛】此题主要考查了数字变化规律,根据根号内外的变化得出规律得出通项公式是解题关键.20、(1);(2).【解析】

利用直线的解析式令,求出x的值即可得到点D的坐标;根据点A、B的坐标,利用待定系数法求出直线的解析式,得到点A的坐标,再联立直线,的解析式,求出点C的坐标,然后利用三角形的面积公式列式进行计算即可得解.【详解】直线的解析式为,且与x轴交于点D,令,得,;设直线的解析式为,,,,解得,直线的解析式为.由,解得,.,.【点睛】本题考查了两直线相交的问题,直线与坐标轴的交点的求解,待定系数法求一次函数解析式,以及一次函数图象与二元一次方程组的关系,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.21、(1)y=x+1;(2);(2)(2,4)或(﹣2,2)或【解析】

(1)利用待定系数法即可解决问题;

(2)求出点C坐标,利用待定系数法求出直线DE的解析式即可解决问题;

(2)求出点E坐标,分两种情形分别讨论求解即可;【详解】(1)∵A(﹣2,0),OA=2OB,∴OA=2,OB=1,∴B(0,1),设直线AB的解析式为y=kx+b,则有解得∴直线AB的解析式为y=x+1.(2)∵BC=AB,A(﹣2,0),B(0,1),∴C(2,2),设直线DE的解析式为y=k′x+b′,则有解得∴直线DE的解析式为令y=0,得到∴(2)如图1中,作CF⊥OD于F.∵CE:CD=1:2,CF∥OE,∴∵CF=2,∴OE=2.∴m=2.∴E(0,2),D(6,0),①当EC为菱形ECFG的边时,F(4,2),G(2,4)或F′(0,1),G′(﹣2,2).②当EC为菱形EF″CG″的对角线时,F″G″垂直平分线段EC,易知直线DE的解析式为,直线G″F″的解析式为由,解得∴F″,设G″(a,b),则有∴∴G″【点睛】本题考查一次函数综合题、平行线分线段成比例定理、菱形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22、(3)y=x﹣3.(3)详见解析;(3)(3+m,﹣4﹣m);(4)y=﹣x﹣3.【解析】

(3)直线AB的解析式为y=kx+b(k≠2),利用待定系数法求函数的解析式即可;(3)先证∠APO=∠PMN,用AAS证△PAO≌△MPN;(3)由(3)中全等三角形的性质得到OP=NM,OA=NP.根据PB=m,用m表示出NM和ON=OP+NP,根据点M在第四象限,表示出点M的坐标即可.(4)设直线MB的解析式为y=nx﹣3,根据点M(m+3,﹣m﹣4).然后求得直线MB的解析式.【详解】(3)解:设直线AB:y=kx+b(k≠2)代入A(3,2),B(2,﹣3),得,解得,∴直线AB的解析式为:y=x﹣3.(3)证明:作MN⊥y轴于点N.∵△APM为等腰直角三角形,PM=PA,∴∠APM=92°.∴∠OPA+∠NPM=92°.∵∠NMP+∠NPM=92°,∴∠OPA=∠NMP.在△PAO与△MPN中,∴△PAO≌△MPN(AAS).(3)由(3)知,△PAO≌△MPN,则OP=NM,OA=NP.∵PB=m(m>2),∴ON=3+m+3=4+mMN=OP=3+m.∵点M在第四象限,∴点M的坐标为(3+m,﹣4﹣m).(4)设直线MB的解析式为y=nx﹣3(n≠2).∵点M(3+m,﹣4﹣m).在直线MB上,∴﹣4﹣m=n(3+m)﹣3.整理,得(m+3)n=﹣m﹣3.∵m>2,∴m+3≠2.解得n=﹣3.∴直线MB的解析式为y=﹣x﹣3.【点睛】本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.23、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解析】

(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根据S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.【详解】(1)∵当点E与点D重合时,

∴CE=CD=6,

∵四边形ABCD,四边形CEFG是正方形,

∴DF=CE=AD=AB=6,

∴S△BDF=×DF×AB=1,当点E为CD的中点时,如图,连接CF,∵四边形ABCD和四边形CEFG均为正方形;

∴∠CBD=∠GCF=25°,

∴BD∥CF,

∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,故答案为:1,1.(2)S△BDF=S正方形ABCD,证明:连接CF.∵四边形ABCD和四边形CEFG均为正方形;∴∠CBD=∠GCF=25°,∴BD∥CF,∴S△BDF=S△BDC=S正方形ABCD;(3)由(2)知S△BDF=S△BDC,∴S△BCH=S△DFH=,∴,∴,,∴,∴EF=2,∴正方形CEFG的边长为2.【点睛】本题是四边形综合题,考查了正方形的性质,三角形的面积公式,平行线的性质,灵活运用这些性质进行推理是本题的关键.24、(1)在点P、Q运动过程中,始终有PQ⊥AC;理由见解析;(1)①当t=时,点P、M、N在一直线上;②存在这样的t,故当t=1或时,存在以PN为一直角边的直角三角形.【解析】

(1)此问需分两种情况,当0<t≤5及5<t≤10两部分分别讨论得PQ⊥AC.(1)①由于点P、M、N在一直线上,则AQ+QM=AM,代入求得t的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论