版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广元市万达中学2024届八年级数学第二学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°2.如图所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,点D是AB的中点,点E是AC的中点,则DE的长为()A.5 B.4 C.3 D.23.下列四个图形是中心对称图形的是()A. B. C. D.4.要使代数式有意义,则的取值范围是A. B. C. D.5.下列各式正确的是()A. B.C. D.6.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.57.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b>1的解集为(
)A.x<0 B.x>0 C.x<2 D.x>28.如图,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE,CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AEA.只有①② B.只有①②③C.只有③④ D.①②③④9.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为()A.4 B.6 C.8 D.1210.已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.511.下列电视台的台标,是中心对称图形的是()A. B. C. D.12.如图,正方形在平面直角坐标系中的点和点的坐标为、,点在双曲线上.若正方形沿轴负方向平移个单位长度后,点恰好落在该双曲线上,则的值是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.若3,4,a和5,b,13是两组勾股数,则a+b的值是________.14.一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.15.如图,直线AB与反比例函数的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,则v的取值范围是__________.16.当x________时,分式有意义.17.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.18.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为________.三、解答题(共78分)19.(8分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请根据以上信息,解答以下问题:(1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;(2)求出该班调查的家庭总户数是多少?(3)求该小区用水量不超过15的家庭的频率.20.(8分)计算:解方程:.21.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy,ABC的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).(1)平移ABC,使得点A的对应点为A1(2,﹣1),点B,C的对应点分别为B1,C1,画出平移后的A1B1C1;(2)在(1)的基础上,画出A1B1C1绕原点O顺时针旋转90°得到的A2B2C2,其中点A1,B1,C1的对应点分别为A2,B2,C2,并直接写出点C2的坐标.22.(10分)已知y与x-1成正比例,且函数图象经过点(3,-6).(1)求这个函数的解析式并画出这个函数图象.(2)已知图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.23.(10分)如图1,一次函数的图象与反比例函数的图象交于)两点与x轴,y轴分别交于A、B(0,2)两点,如果的面积为6.(1)求点A的坐标;(2)求一次函数和反比例函数的解析式;(3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和的面积24.(10分)在▱ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F(1)如图①,求证:OE=OF;(2)如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.25.(12分)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(千米),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图.组别单次营运里程“x”(千米)频数第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据以上信息,解答下列问题:(1)表中a=,样本中“单次营运里程”不超过15千米的频率为;(2)请把频数分布直方图补充完整;(3)估计该公司5000个“单次营运里程”超过20千米的次数.(写出解答过程)26.在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?
参考答案一、选择题(每题4分,共48分)1、D【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.【详解】解:四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,,,四边形是平行四边形(对边相互平行的四边形是平行四边形);过点分别作,边上的高为,.则(两纸条相同,纸条宽度相同);平行四边形中,,即,,即.故正确;平行四边形为菱形(邻边相等的平行四边形是菱形).,(菱形的对角相等),故正确;,(平行四边形的对边相等),故正确;如果四边形是矩形时,该等式成立.故不一定正确.故选:.【点睛】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.2、D【解析】
根据D为AB的中点可求出AD的长,再根据在直角三角形中,30°角所对的直角边等于斜边的一半即可求出DE的长度.【详解】解:∵D为AB的中点,AB=8,∴AD=4,∵DE⊥AC于点E,∠A=30°,∴DE=AD=2,故选D.【点睛】本题考查了直角三角形的性质:直角三角形中,30°角所对的直角边等于斜边的一半.3、D【解析】
如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形.
根据中心对称图形的概念结合各图形的特点求解.【详解】解:A.不是中心对称图形,本选项不符合题意;
B不.是中心对称图形,本选项不符合题意;
C.不是中心对称图形,本选项不符合题意;
D.是中心对称图形,本选项符合题意.
故选D.【点睛】本题考查的是中心对称的概念,属于基础题.4、C【解析】
根据二次根式的被开方数非负得到关于x的不等式,解不等式即得答案.【详解】解:根据题意,得,解得,.故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式被开方数非负是解题的关键.5、C【解析】
根据分式的性质,分式的加减,可得答案.【详解】A、c=0时无意义,故A错误;B、分子分母加同一个整式,分式的值发生变化,故B错误;C、分子分母都除以同一个不为零的整式,分式的值不变,故C符合题意;D、,故D错误;故选C.【点睛】本题考查了分式的性质及分式的加减,利用分式的性质及分式的加减是解题关键.6、C【解析】试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:1.2(1+x)2=2.5,故选C.7、A【解析】
根据图形得出k<0和直线与y轴交点的坐标为(0,1),即可得出不等式的解集.【详解】∵从图象可知:k<0,直线与y轴交点的坐标为(0,1),
∴不等式kx+b>1的解集是x<0,
故选A.【点睛】考查了一次函数与一元一次不等式,能根据图形读出正确信息是解此题的关键.8、B【解析】
根据题意,结合图形,对选项一一求证,判定正确选项.【详解】解:在□ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,
∴△CDF≌△EBC(SAS),故①正确;
在▱ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正确;
同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故③正确;
当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故④错误;
综上所述,正确的结论有①②③.
故选B.【点睛】本题考查了全等三角形的判定、等边三角形的判定和性质、平行线的性质等知识,综合性强,考查学生综合运用数学知识的能力.9、C【解析】∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB:S△CMA=()2=()2=,而S△BNC=2,∴S△CMA=1,∵OM=MN=NC,∴OM=MC,∴S△AOM=S△AMC=4,∵S△AOM=|k|,∴|k|=4,∴k=1.点睛:本题主要考查了反比例函数的比例系数k的几何意义以及相似三角形的判定与性质.从反比例函数y=(k≠0)的图象上任取一点向x轴或y轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.10、D【解析】试题解析:∵=,且是整数,∴2是整数,即1n是完全平方数,∴n的最小正整数为1.故选D.点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.11、D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D符合。故选D。12、B【解析】
过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于,根据全等三角形的判定和性质,可得到点坐标和点坐标,从而求得双曲线函数未知数和平移距离.【详解】过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于.,,,.又,,,点坐标为将点坐标为代入,可得=4.与同理,可得到,,点坐标为,正方形沿轴负方向平移个单位长度后,点坐标为将点坐标为代入,可得=2.故选B.【点睛】本题综合考查反比例函数中未知数的求解、全等三角形的性质与判定、图形平移等知识.涉及图形与坐标系结合的问题,要学会通过辅助线进行求解.二、填空题(每题4分,共24分)13、1【解析】解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=1.故答案为:1.14、m<1【解析】
一次函数y=kx+b(k≠2)的k<2时,y的值随x的增大而减小,据此可解答.【详解】∵一次函数y=(m-1)x+5,y随着自变量x的增大而减小,∴m-1<2,解得:m<1,故答案是:m<1.【点睛】本题考查了一次函数图象与系数的关系.一次函数y=kx+b图象与y轴的正半轴相交⇔b>2,一次函数y=kx+b图象与y轴的负半轴相交⇔b<2,一次函数y=kx+b图象过原点⇔b=2.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.15、2<v<1【解析】
由∠ACO=45°可设直线AB的解析式为y=-x+b,由点A、B在反比例函数图象上可得出p=,q=,代入点A、B坐标中,再利用点A、B在直线AB上可得=﹣u+b①,=﹣v+b②,两式做差即可得出u关于v的关系式,结合u的取值范围即可得答案.【详解】∵∠ACO=45°,直线AB经过二、四象限,∴设直线AB的解析式为y=﹣x+b.∵点A(u,p)和点B(v,q)为反比例函数的图象上的点,∴p=,q=,∴点A(u,),点B(v,).∵点A、B为直线AB上的点,∴=﹣u+b①,=﹣v+b②,①﹣②得:,即.∵<u<2,∴2<v<1,故答案为:2<v<1.【点睛】本题考查反比例函数与一次函数的综合,根据∠ACO=45°设出直线AB解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.16、【解析】
根据分母不等于0列式求解即可.【详解】由题意得,x−1≠0,解得x≠1.故答案为:≠1.【点睛】本题考查分式有意义的条件,熟练掌握分式的基本性质是解题关键.17、(﹣,2)【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【详解】∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).【点睛】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.18、2或或【解析】分情况讨论:(1)当PB为腰时,若P为顶点,则E点与C点重合,如图1所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,∵P是AD的中点,∴AP=DP=2,根据勾股定理得:BP===;若B为顶点,则根据PB=BE′得,E′为CD中点,此时腰长PB=;(2)当PB为底边时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①当E在AB上时,如图2所示:则BM=BP=,∵∠BME=∠A=90°,∠MEB=∠ABP,∴△BME∽△BAP,∴,即,∴BE=;②当E在CD上时,如图3所示:设CE=x,则DE=4−x,根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,∴42+x2=22+(4−x)2,解得:x=,∴CE=,∴BE===;综上所述:腰长为:,或,或;故答案为,或,或.点睛:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质并能进行推理计算是解决问题的关键.三、解答题(共78分)19、(1)m=12,n=0.08;(2)50;(3)0.68.【解析】
(1)根据任意一组频数和频率即可得出总频数,即总频数为,即可得出m=12,进而求得n=0.08;补充完整的频数直方图见详解;(2)根据任意一组频数和频率即可得出总频数,即总频数为;(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.【详解】解:(1)∵频数为6,频率为0.12∴总频数为∴m=50-6-16-10-4-2=12∴n=4÷50=0.08数据求出后,即可将频数直方图补充完整,如下图所示:(2)根据(1)中即可得知,总频数为答:该班调查的家庭总户数是50户;(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.【点睛】此题主要考查统计图和频数分布表的性质,熟练掌握其特征,即可得解.20、(1);(2),.【解析】
直接利用零指数幂的性质以及二次根式的性质分别化简得出答案;直接利用十字相乘法分解因式进而解方程得出答案.【详解】解:原式;,解得:,.【点睛】此题主要考查了因式分解法解方程以及实数运算,正确掌握解题方法是解题关键.21、(1)见解析;(2)见解析,C2(﹣3,﹣4)【解析】
(1)根据可以得到平移方式,进而分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.【详解】解:(1)如图,△A1B1C1即为所求.(2)△A2B2C2即为所求.C2(﹣3,﹣4).【点睛】本题主要考查图形的平移及旋转,准确的找到平移或旋转后的对应点是解题的关键.22、(1)y=-3x+3.画图见解析;(2)y1<y2.【解析】
(1)设解析式为y=k(x-1),利用待定系数法进行求解可得函数解析式,根据解析式画出函数图象即可;(2)根据一次函数的性质进行解答即可.【详解】(1)设解析式为y=k(x-1),将(3,-6)代入得:-6=k(3-1),解得k=-3,所以解析式为y=-3(x-1)=-3x+3,图象如图所示:(2)由题意可知,y=-3x+3函数图像y随x的增大而减小,所以x1>x2,则y1<y2.【点睛】本题考查了一次函数的图象与性质,涉及了待定系数法,画函数图象等,正确把握相关知识是解题的关键.23、(1)A(﹣4,0);(2),;(3),8【解析】
(1)由三角形面积求出OA=4,即可求得A(-4,0).(2)利用待定系数法即可求出一次函数的解析式,进而求得C点的坐标,把C点的坐标代入,求出m的值,得到反比例函数的解析式;(3)先联立两函数解析式得出D点坐标,根据中心对称求得E点的坐标,然后根据三角形的面积公式计算△CED的面积即可.【详解】(1)如图1,∵,∴,∴,∵的面积为6,∴,∵,∴OA=4,∴A(﹣4,0);(2)如图1,把代入得,解得,∴一次函数的解析式为,把代入得,,∴,∵点C在反比例函数的图象上,∴m=2×3=6,∴反比例函数的解析式为;(3)如图2,作轴于F,轴于H,解,得,,∴,∴,∴=【点睛】此题考查一次函数与反比例函数的交点问题,待定系数法求函数解析式,函数图象上点的坐标特征,三角形面积的计算,注意数形结合的思想运用.24、(1)证明见解析;(2)证明见解析.【解析】
(1)由四边形ABCD是平行四边形,得到OB=OD,AB∥CD,根据全等三角形的性质即可得到结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年品牌陈列协议2篇
- 水利水电工程专业生涯发展展示
- 外阴蛲虫病的临床特征
- 环保技术开发承诺书在线申报
- 远程教育网线施工合同
- 农产品采购与分销
- 外阴中肾管囊肿的临床护理
- 水利技术堰塘整治施工合同
- 旅游公司财务管理策略
- 医疗整形机构招聘合同范例
- 三级入场教育培训
- 电子商务运营流程详解作业指导书
- 心肺复苏培训课件
- 小学劳动教育一年级下册第二单元第3课《削果皮》课件
- 担任学生干部证明
- 绿化恢复合同范本
- 2024年秋一年级语文上册第三单元 作业设计(含答案)
- 经济法学-计分作业一(第1-4章权重25%)-国开-参考资料
- 2024年自考《14269数字影像设计与制作》考试复习题库(含答案)
- 2024年新版全员消防安全知识培训
- 教师资格考试小学数学面试试题及解答参考(2024年)
评论
0/150
提交评论