2024届河北省保定定兴县联考数学八年级下册期末联考模拟试题含解析_第1页
2024届河北省保定定兴县联考数学八年级下册期末联考模拟试题含解析_第2页
2024届河北省保定定兴县联考数学八年级下册期末联考模拟试题含解析_第3页
2024届河北省保定定兴县联考数学八年级下册期末联考模拟试题含解析_第4页
2024届河北省保定定兴县联考数学八年级下册期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省保定定兴县联考数学八年级下册期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.要使分式有意义,应满足的条件是()A. B. C. D.2.使代数式有意义的x的取值范围是()A.x>2 B.x>﹣2 C.x≥2 D.x≥﹣23.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°<<180°)至△A′B′C,使得点A′恰好落在AB边上,则等于().A.150° B.90°C.60° D.30°4.将函数的图象向下平移3个单位,则得到的图象相应的函数表达式为A. B. C. D.5.若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1 C.﹣1 D.16.正方形具有而菱形不一定具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线平分一组对角7.观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)如果两个三角形的3个角对应相等,那么这两个三角形全等;(3)同角的补角相等;(4)直角都相等.其中真命题的个数是().A.0 B.1 C.2 D.38.下列二次根式中,化简后不能与进行合并的是()A. B. C. D.9.已知一次函数y=x-2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A. B. C. D.10.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm11.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.512.甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是,,则成绩比较稳定的是()A.甲 B.乙 C.甲和乙一样 D.无法确定二、填空题(每题4分,共24分)13.若式子有意义,则x的取值范围是_____.14.要使二次根式有意义,则的取值范围是________.15.一组数据:2,3,4,5,6的方差是____16.如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______17.已知关于x的方程有两个不相等的实数根,则a的取值范围是_____________.18.若是一个完全平方式,则______.三、解答题(共78分)19.(8分)如图,把两个大小相同的含有45º角的直角三角板按图中方式放置,其中一个三角板的锐角顶点与另一个三角板的直角顶点重合于点A,且B,C,D在同一条直线上,若AB=2,求CD的长.20.(8分)如图,在四边形中,,,,,、分别在、上,且,与相交于点,与相交于点.(1)求证:四边形为矩形;(2)判断四边形是什么特殊四边形?并说明理由;(3)求四边形的面积.21.(8分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由.22.(10分)某校八年级学生进行了一次视力调查,绘制出频数分布表和频数直方图的一部分如下:请根据图表信息完成下列各题:(1)在频数分布表中,的值为,的值是;(2)将频数直方图补充完整;(3)小芳同学说“我的视力是此次调查所得数据的中位数”,你觉得小芳同学的视力应在哪个范围内?(1)若视力在不小于1.9的均属正常,请你求出视力正常的人数占被调查人数的百分比.23.(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?24.(10分)如图所示,P(a,3)是直线y=x+5上的一点,直线y=k1x+b与双曲线相交于P、Q(1,m).(1)求双曲线的解析式及直线PQ的解析式;(2)根据图象直接写出不等式>k1x+b的解集.(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积25.(12分)如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.26.计算:(1)(2)-

参考答案一、选择题(每题4分,共48分)1、C【解析】

直接利用分式有意义的条件得出答案.【详解】要使分式有意义,

则x-1≠0,

解得:x≠1.

故选:C.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.2、D【解析】

根据被开方数大于等于0列式计算即可得解.【详解】由题意得,x+2≥0,解得x≥﹣2,故选D.【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.3、C【解析】

由在Rt△ABC中,∠ACB=90°,∠ABC=30°,可求得∠A的度数,又由将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,易得△ACA′是等边三角形,继而求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,∴∠A=90°−∠ABC=60°,∵将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,∴AC=A′C,∴△ACA′是等边三角形,∴α=∠ACA′=60°.故选C.【点睛】本题考查了旋转的性质及等边三角形的性质,熟练掌握性质定理是解题的关键.4、B【解析】

直接根据函数图象平移的法则进行解答即可.【详解】解:将一次函数的图象向下平移3个单位长度,相应的函数是;故答案选:B.【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.5、D【解析】试题分析:根据x≤0,可知-x≥0,因此可知1-x≥0,然后根据可求解为|1﹣x|﹣=1-x+x=1.故选:D6、A【解析】试题分析:根据正方形、菱形的性质依次分析各选项即可判断.正方形具有而菱形不一定具有的性质是对角线相等故选A.考点:正方形、菱形的性质点评:本题属于基础应用题,只需学生熟练掌握正方形、菱形的性质,即可完成.7、C【解析】

根据不等式的运算、相似三角形的判定定理、补角的性质、直角的性质对各命题进行判断即可.【详解】(1)如果a<0,b>0,那么a+b的值不确定,错误;(2)如果两个三角形的3个角对应相等,那么这两个三角形相似,错误;(3)同角的补角相等,正确;(4)直角都相等,正确;故真命题的个数是2个故答案为:C.【点睛】本题考查了命题的问题,掌握不等式的运算、相似三角形的判定定理、补角的性质、直角的性质是解题的关键.8、C【解析】

首先根据题意,只要含有同类项即可合并,然后逐一进行化简,得出A、B、D选项都含有同类项,而C选项不含同类项,故选C.【详解】解:根据题意,只要含有同类项即可合并,A中=,可以与进行合并;B中=,可以与进行合并;C中=,与无同类项,不能合并;D中=,可以与进行合并.故选C.【点睛】此题主要考查二次根式的化简与合并.9、C【解析】

由已知条件知x-1>0,通过解不等式可以求得x>1.然后把不等式的解集表示在数轴上即可.【详解】∵一次函数y=x-1,∴函数值y>0时,x-1>0,解得x>1,表示在数轴上为:

故选:C【点睛】本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、C【解析】

首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,SF=20cm,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.11、D【解析】

①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.12、A【解析】

方差决定一组数据的稳定性,方差大的稳定性差,方差小的稳定好.【详解】∵,∴∴甲同学的成绩比较稳定故选:A.【点睛】本题考查了方差与稳定性的关系,熟知方差小,稳定性好是解题的关键.二、填空题(每题4分,共24分)13、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案为且.14、x≥1【解析】

根据二次根式被开方数为非负数进行求解.【详解】由题意知,,解得,x≥1,故答案为:x≥1.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.15、2【解析】=4,∴S2=[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2.16、3【解析】

根据题意画出翻折后的图形,连接OE、DE,先证明△OED是等边三角形,再利用同底等高的三角形面积相等,说明S△AED=S△OED,作OF⊥ED于F,求出△OED的面积即可得出结果.【详解】解:如图,△AEC是△ABC沿AC翻折后的图形,连接OE、DE,∵四边形ABCD是平行四边形,∴OB=OD=12∵△AEC是△ABC沿AC翻折后的图形,∠AOB=60º,∴∠AOE=60º,OE=OB,∴∠EOD=60º,OE=OD,∴△OED是等边三角形,∴∠DEO=∠AOE=60º,ED=OD=2,∴ED∥AC,∴S△AED=S△OED,作OF⊥ED于F,DF=12∴OF=OD2-DF∴S△OED=12ED·DF=∴S△AED=3.故答案为:3.【点睛】本题考查了图形的变换,平行四边形的性质,等边三角形的判定与性质,找到S△AED=S△OED是解题的关键.17、且【解析】

由题意可知方程根的判别式△>0,于是可得关于a的不等式,解不等式即可求出a的范围,再结合二次项系数不为0即得答案.【详解】解:根据题意,得:,且,解得:且.故答案为:且.【点睛】本题考查了一元二次方程的根的判别式和一元一次不等式的解法,属于基本题型,熟练掌握一元二次方程根的判别式和方程根的个数之间的关系是解题的关键.18、【解析】

根据完全平方公式的结构特征进行判断即可确定出m的值.【详解】∵x2+2mx+1是一个完全平方式,∴m=±1,故答案为:±1.【点睛】本题考查了完全平方式,熟练掌握完全平方式的结构特征是解题的关键.本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.三、解答题(共78分)19、.【解析】

过点A作AF⊥BC于F,先利用等腰直角三角形的性质求出BC=4,BF=AF=CF=2,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴△ABC是等腰直角三角形,∴BC=AB=4,BF=AF=CF=BC=2,∵两个同样大小的含45°角的三角尺,∴AD=BC=4,在Rt△ADF中,根据勾股定理得,DF=,∴CD=DF-CF=,故答案为:.【点睛】此题主要考查了勾股定理,等腰直角三角形的判定与性质,全等三角形的性质,正确作出辅助线是解本题的关键.20、(1)见解析;(2)四边形EFPH为矩形,理由见解析;(3)【解析】

(1)由平行线的性质证出∠BCD=90°即可;(2)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出∠BEC=90°,根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH//FP,EF//HP,推出平行四边形EFPH,根据矩形的判定推出即可;(3)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.【详解】(1)证明:∵AB//CD,∴∠CBA+∠BCD=180°,∵∠CBA=∠ADC=90°,∴∠BCD=90°,∴四边形ABCD是矩形;(2)解:四边形EFPH为矩形;理由如下:∵四边形ABCD是矩形,∴AD=BC=5,AB=CD=2,AD∥BC,由勾股定理得:CE=,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.∵DE=BP,DE//BP,∴四边形DEBP是平行四边形,∴BE//DP,∵AD=BC,AD//BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP//CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.(3)解:∵四边形AECP是平行四边形,∴PD=BE=2,在Rt△PCD中,FC⊥PD,PC=BC-BP=4,由三角形的面积公式得:PD•CF=PC•CD,∴CF=,∴EF=CE-CF=,∵PF=,∴S矩形EFPH=EF•PF=,即:四边形EFPH的面积是.【点睛】本题综合考查了矩形的判定与性质、勾股定理及其逆定理、平行四边形的性质和判定,三角形的面积等知识点的运用,主要培养学生分析问题和解决问题的能力,此题综合性比较强,题型较好,难度也适中.21、(1)证明见解析;(2)△ACE是直角三角形,理由见解析.【解析】分析:(1)根据四边形ABCD和四边形BPEF是正方形,证明△APE≌△CFE;(2)分别判断△ABC,△APE是等腰直角三角形得∠CAE=90°.详解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,AP=CF,∠P=∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;(2)∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形.点睛:本题考查了正方形的性质,正方形的四边相等且平行,四角相等,每一条对角线平分一组对角,注意到等腰直角的底角等于45°.22、(1)60,0.2;(2)见解析;(3)在之间;(1)【解析】

(1)用频数除以对应的频率可得调查的总人数,再用总人数乘以0.3即可得a的值,用10除以总人数即可得b的值;(2)根据a的值补图即可;(3)根据总人数和中位数的定义可知中位数所在的小组,即为小芳的视力范围;(1)根据表格数据求出视力大于等于1.9的学生人数,再除以总人数即可得百分比.【详解】(1)调查总人数为(人)则,故答案为:60,0.2.(2)如图所示,(3)调查总人数为200人,由表可知中位数在之间,∴小芳同学的视力在之间(1)视力大于等于1.9的学生人数为60+10=70人,∴视力正常的人数占被调查人数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论