2024届四川省绵阳外国语学校八年级下册数学期末综合测试试题含解析_第1页
2024届四川省绵阳外国语学校八年级下册数学期末综合测试试题含解析_第2页
2024届四川省绵阳外国语学校八年级下册数学期末综合测试试题含解析_第3页
2024届四川省绵阳外国语学校八年级下册数学期末综合测试试题含解析_第4页
2024届四川省绵阳外国语学校八年级下册数学期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省绵阳外国语学校八年级下册数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.函数y中,自变量x的取值范围是()A.x=-5 B.x≠-5 C.x=0 D.x≠02.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.73.如图所示,直线经过正方形的顶点,分别过顶点,作于点,于点,若,,则的长为()A.1 B.5 C.7 D.124.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.45.平行四边形ABCD的对角线相交于点0,且AD≠CD,过点0作OM⊥AC,交AD于点M.如果△CDM的周长为6,那么平行四边形ABCD的周长是()A.8 B.10 C.12 D.186.下列计算错误的是()A.=2 B.=3 C.÷=3 D.=1﹣=7.如图,直线y=k1x与直线y=k2x+b相交于点(1,﹣1),则不等式k1x<k2x+b的解集是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.下列标志中,可以看作是轴对称图形的是()A. B. C. D.9.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或810.如图,菱形的边长为是边的中点,是边上的一个动点,将线段绕着逆时针旋转,得到,连接,则的最小值为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知一组数据4,4,5,x,6,6的众数是6,则这组数据的中位数是_____.12.计算=_____.13.已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.14.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.15.如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.16.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是________.17.直线y=2x﹣4与x轴的交点坐标是_____.18.化简:=_________.三、解答题(共66分)19.(10分)在正方形ABCD中,P是对角线AC上的点,连接BP、DP.⑴求证:BP=DP;⑵如果AB=AP,求∠ABP的度数.20.(6分)先化简,再求值:()•,其中x=﹣1.21.(6分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC和CD于点P,Q.(1)求证:△ABP∽△DQR;(2)求的值.22.(8分)先化简,再求值:÷(2+),其中x=﹣1.23.(8分)某市在今年对全市6000名八年级学生进行了一次视力抽样调查,并根据统计数据,制作了的统计表和如图所示统计图.组别视力频数(人)A20BaCbD70E10请根据图表信息回答下列问题:(1)求抽样调查的人数;(2)______,______,______;(3)补全频数分布直方图;(4)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是多少?根据上述信息估计该市今年八年级的学生视力正常的学生大约有多少人?24.(8分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试形体口才专业水平创新能力甲86909692乙92889593(1)若公司想招一个综合能力较强的职员,计算两名候选人的平均成绩,应该录取谁?(2)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照1:3:4:2的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?25.(10分)甲、乙两人同时从P地出发步行分别沿两个不同方向散步,甲以的速度沿正北方向前行;乙以的速度沿正东方向前行,(1)过小时后他俩的距离是多少?(2)经过多少时间,他俩的距离是?26.(10分)如图,平行四边形的两条对角线相交于点、分别是的中点,过点作任一条直线交于点,交于点,求证:(1);(2).

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据分式的意义的条件:分母不等于0,可以求出x的范围.【详解】解:根据题意得:x+1≠0,

解得:x≠-1.

故选B.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2、B【解析】分析:根据平均数的定义计算即可;详解:由题意(3+4+5+x+6+7)=5,解得x=5,故选B.点睛:本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题3、C【解析】

因为ABCD是正方形,所以AB=AD,∠ABC=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△AED,所以AF=DE=4,BF=AE=3,则EF的长可求.【详解】∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=1.故选:C.【点睛】此题把全等三角形的判定和正方形的性质结合求解.考查学生综合运用数学知识的能力.4、B【解析】

试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).5、C【解析】试题分析:根据OM⊥AC,O为AC的中点可得AM=MC,根据△CDM的周长为6可得AD+DC=6,则四边形ABCD的周长为2×(AD+DC)=1.考点:平行四边形的性质.6、D【解析】分析:根据二次根式的化简及计算法则即可得出答案.详解:A、=2,正确;B、=3,正确;C、÷=3,正确;D、,错误;故选D.点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.7、A【解析】

由图象得到直线y=k1x与直线y=k2x+b相交于点(1,﹣1),观察直线y=k1x落在直线y=k2x+b的下方对应的x的取值即为所求.【详解】.解:∵直线y=k1x与直线y=k2x+b相交于点(1,﹣1),∴当x>1时,k1x<k2x+b,即k1x<k2x+b的解集为x>1,故选:A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8、D【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;

B、不是轴对称图形,是中心对称图形,不符合题意;

C、不是轴对称图形,是中心对称图形,不符合题意;

D、是轴对称图形,符合题意.

故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.9、D【解析】

因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;当3为底时,三角形的三边为3,2、2可以构成三角形,周长为1.故选D.【点睛】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.10、B【解析】

取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=2,BC=4,求EC的长.【详解】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,EB=2,BC=4,∴EC=2,故选A.【点睛】本题考查菱形的性质,直角三角形的性质;确定G点的运动轨迹,是找到对称轴的关键.二、填空题(每小题3分,共24分)11、1.1【解析】

这组数据4,4,1,,6,6的众数是6,说明6出现的次数最多,因此,从小到大排列后,处在第3、4位两个数据的平均数为,因此中位数是1.1.【详解】解:这组数据4,4,1,,6,6的众数是6,,,故答案为:1.1.【点睛】考查众数、中位数的意义及求法,明确众数、中位数的意义,掌握众数、中位数的求法是解决问题的前提.12、2【解析】

根据二次根式乘法法则进行计算.【详解】=.故答案是:2.【点睛】考查了二次根式的乘法,解题关键是运用二次根式的乘法法则进行计算.13、1.【解析】

连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.【详解】如图所示:连接BD.∵E,F分别是AB,AD的中点,EF=5,∴BD=2EF=1.∵ABCD为矩形,∴AC=BD=1.故答案为:1.【点睛】本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.14、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.15、4【解析】

根据题意可证明四边形EFGH为菱形,故可求出面积.【详解】∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H分别是四条边的中点,∴AE=DG=BE=CG,AH=DH=BF=CF,∴△AEH≌△DGH≌△BEF≌△CGF(SAS),∴EH=EF=FG=GH,∴四边形EFGH是菱形,∵HF=2,EG=4,∴四边形EFGH的面积为HF·EG=×2×4=4.【点睛】此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.16、【解析】

由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,

∴小军能一次打开该旅行箱的概率是:.故答案是:.【点睛】解题关键是根据概率公式(如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=).17、(2,0)【解析】

与x轴交点的纵坐标是0,所以把代入函数解析式,即可求得相应的x的值.【详解】解:令,则,解得.所以,直线与x轴的交点坐标是.故填:.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.18、【解析】

根据三角形法则计算即可解决问题.【详解】解:原式=,=,=,=.

故答案为.【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.三、解答题(共66分)19、(1)证明见解析;(2)67.5°.【解析】

(1)证明△ABP≌△ADP,可得BP=DP;

(2)证得∠ABP=∠APB,由∠BAP=45°可得出∠ABP=67.5°.【详解】证明:(1)∵四边形ABC是正方形,

∴AD=AB,∠DAP=∠BAP=45°,

在△ABP和△ADP中∴△ABP≌△ADP(SAS),

∴BP=DP,

(2)∵AB=AP,

∴∠ABP=∠APB,

又∵∠BAP=45°,

∴∠ABP=67.5°.【点睛】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练运用图形的性质证明问题.20、1﹣2.【解析】先根据分式混合运算的法则把括号里的进行化简,然后进行乘法运算,再把x的值代入进行计算即可.解:原式==3(x+1)﹣x+1=3x+3﹣x+1=1x+3.当x=﹣1时,原式=1×(﹣1)﹣1=1﹣2.21、(1)见解析;(2).【解析】

(1)根据平行线的性质可证明两三角形相似;(2)根据平行四边形的性质及三角形中位线定理得:BP=PR,则CP=RE,证明△CPQ∽△DRQ,可得,由(1)中的相似列比例式可得结论.【详解】(1)∵四边形ABCD和四边形ACED都是平行四边形,∴AB∥CD,AC∥DE,∴∠BAC=∠ACD,∠ACD=∠CDE,∴∠BAC=∠QDR,∵AB∥CD,∴∠ABP=∠DQR,∴△ABP∽△DQR;(2)∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC,AD=CE,∴BC=CE,∵CP∥RE,∴BP=PR,∴CP=RE,∵点R为DE的中点,∴DR=RE,∴,∵CP∥DR,∴△CPQ∽△DRQ,∴,∴,由(1)得:△ABP∽△DQR,∴.【点睛】此题考查了相似三角形的判定与性质以及平行四边形的性质.此题有难度,注意掌握数形结合思想的应用.22、当x=﹣1时,原式==.【解析】试题分析:原式=÷=÷==,当x=﹣1时,原式==.考点:分式的化简求值.23、(1)抽样调查的人数是200人;(2)40,60,30;(3)补图见解析;(4)该市2016年中考的初中毕业生视力正常的学生大约有2400人.【解析】

(1)先根据4.0≤x<4.3的频数除以频率求出被调查的总人数,(2)用总人数乘以频率20%计算即可得到a,用总人数减去其他频数求出b,再用b除以总人数,即可求出m的值;(3)根据(2)求出a,b的值,即可补全统计图;(4)求出后两组的频率之和即可求出视力正常的人数占被统计人数的百分比,用总人数乘以所占的百分比即可得解.【详解】(1)抽样调查的人数是:人;(2)a=200×20%=40(人);b=200−20−40−70−10=60(人);m%=×100%=30%,则m=30;故答案为:40,60,30;(3)根据(2)求出a,b的值,补图如下:(4)视力正常的人数占被统计人数的百分比是:;根据题意得:(人)答:该市2016年中考的初中毕业

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论